scholarly journals The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

2014 ◽  
Vol 5 ◽  
pp. 111-120 ◽  
Author(s):  
Jakob G Howalt ◽  
Tejs Vegge

The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of O and N2 species on cuboctahedral Mo13 nanoclusters. The calculations show that the molybdenum nanocluster will preferentially bind oxygen over nitrogen and hydrogen at neutral bias, but under electrochemical reaction conditions needed for nitrogen reduction, oxygen adsorption is severely weakened and the adsorption energy is comparable to hydrogen and nitrogen adsorption. The potentials required to reduce oxygen off the surface are −0.72 V or lower for all oxygen coverages studied, and it is thus possible to (re)activate (partially) oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface and electrochemical ammonia production via the associative mechanism is possible at potentials as low as −0.45 V to −0.7 V.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1032
Author(s):  
Anirban Naskar ◽  
Rabi Khanal ◽  
Samrat Choudhury

The electronic structure of a series perovskites ABX3 (A = Cs; B = Ca, Sr, and Ba; X = F, Cl, Br, and I) in the presence and absence of antisite defect XB were systematically investigated based on density-functional-theory calculations. Both cubic and orthorhombic perovskites were considered. It was observed that for certain perovskite compositions and crystal structure, presence of antisite point defect leads to the formation of electronic defect state(s) within the band gap. We showed that both the type of electronic defect states and their individual energy level location within the bandgap can be predicted based on easily available intrinsic properties of the constituent elements, such as the bond-dissociation energy of the B–X and X–X bond, the X–X covalent bond length, and the atomic size of halide (X) as well as structural characteristic such as B–X–B bond angle. Overall, this work provides a science-based generic principle to design the electronic states within the band structure in Cs-based perovskites in presence of point defects such as antisite defect.


2017 ◽  
Vol 72 (12) ◽  
pp. 1131-1138 ◽  
Author(s):  
Mehdi Aramideh ◽  
Mahmoud Mirzaei ◽  
Ghadamali Khodarahmi ◽  
Oğuz Gülseren

AbstractCancer is one of the major problems for so many people around the world; therefore, dedicating efforts to explore efficient therapeutic methodologies is very important for researchers of life sciences. In this case, nanostructures are expected to be carriers of medicinal compounds for targeted drug design and delivery purposes. Within this work, the graphene (Gr)-functionalised derivatives of capecitabine (CAP), as a representative anticancer, have been studied based on density functional theory calculations. Two different sizes of Gr molecular models have been used for the functionalisation of CAP counterparts, CAP-Gr3 and CAP-Gr5, to explore the effects of Gr-functionalisation on the original properties of CAP. All singular and functionalised molecular models have been optimised and the molecular and atomic scale properties have been evaluated for the optimised structures. Higher formation favourability has been obtained for CAP-Gr5 in comparison with CAP-Gr3 and better structural stability has been obtained in the water-solvated system than the isolated gas-phase system for all models. The CAP-Gr5 model could play a better role of electron transferring in comparison with the CAP-Gr3 model. As a concluding remark, the molecular properties of CAP changed from singular to functionalised models whereas the atomic properties remained almost unchanged, which is expected for a carrier not to use significant perturbations to the original properties of the carried counterpart.


Author(s):  
Nishith K. Das ◽  
T. Shoji

Density functional theory calculations have been used to calculate the ground state structure and oxygen and hydrogen adsorption properties of the pure and doped-iron nanoclusters. Small atomic clusters containing two to six atoms have been considered and a single Fe atom has replaced by a minor element i.e. Zr, Ti, and Sc. Doping of a minor element increases the cluster stability and octahedron Fe5Zr is the most stable structure within this study. Zr- and Sc-doped clusters have the highest oxygen and hydrogen adsorption energy. The electronic structure shows a strong hybridization between the metal 3d and oxygen 2p orbitals with a small contribution from metal 4s and 3p orbitals. Additionally, H s and metal 4s states form a new peak below the Fermi energy and a small modification is observed for 3d orbitals near the Fermi level. A small amount of Zr- and Sc-doping into the Fe-based alloys might improve the oxide film adherence.


2019 ◽  
Vol 9 (4) ◽  
pp. 323-334 ◽  
Author(s):  
Zeinab Hoseini Dastgerdi ◽  
Seyyed Salar Meshkat ◽  
Mehdi D. Esrafili

AbstractThe present work considers an adsorptive removal of Indigo carmine (IC) dye onto nanotube carbon (CNTs). The pure CNTs were prepared via chemical vapor deposition (CVD) method utilizing methane gas as a carbon source at 1000 °C in a quartz tube. The morphology and surface chemical structure of the adsorbents were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption/desorption technique, and thermal gravity analysis (TGA). The parameters of the IC dye adsorption, such as initial concentration, contact time, pH, and mass-loaded adsorbent, were evaluated. The kinetic study confirmed that a pseudo-second-order model was best fitted to the adsorption data. The removal efficiency of adsorption onto pure and COOH-functionalized CNTs was 84% and 98.7% at 15 min, respectively. The equilibrium results were fitted well to the Langmuir isotherm model. The adsorption capacity of the CNT and COOH–CNT was 88.5 and 136 mg/g, respectively. The reusability of the adsorbents was studied, and after eight cycles, the efficiency decreased to 70%. Moreover, the density functional theory calculations confirmed that the functionalization of CNTs with COOH groups improves the adsorption properties of IC due to the formation of hydrogen-bonding interactions.


2005 ◽  
Vol 862 ◽  
Author(s):  
Mayur S. Valipa ◽  
Tamas Bakos ◽  
Eray S. Aydil ◽  
Dimitrios Maroudas

AbstractDevice-quality hydrogenated amorphous silicon (a-Si:H) thin films grown under conditions where the SiH3 radical is the dominant deposition precursor are remarkably smooth, as the SiH3 radical is very mobile and fills surface valleys during its diffusion on the a-Si:H surface. In this paper, we analyze atomic-scale mechanisms of SiH3 diffusion on a-Si:H surfaces based on molecular-dynamics simulations of SiH3 radical impingement on surfaces of a-Si:H films. The computed average activation barrier for radical diffusion on a-Si:H is 0.16 eV. This low barrier is due to the weak adsorption of the radical onto the a-Si:H surface and its migration predominantly through overcoordination defects; this is consistent with our density functional theory calculations on crystalline Si surfaces. The diffusing SiH3 radical incorporates preferentially into valleys on the a-Si:H surface when it transfers an H atom and forms a Si-Si backbond, even in the absence of dangling bonds.


Author(s):  
Fabian Morteo-Flores ◽  
Julien Engel ◽  
Alberto Roldan

Circular economy emphasizes the idea of transforming products involving economic growth and improving the ecological system to reduce the negative consequences caused by the excessive use of raw materials. This can be achieved with the use of second-generation biomass that converts industrial and agricultural wastes into bulk chemicals. The use of catalytic processes is essential to achieve a viable upgrade of biofuels from the lignocellulosic biomass. We carried out density functional theory calculations to explore the relationship between 13 transition metals (TMs) properties, as catalysts, and their affinity for hydrogen and oxygen, as key species in the valourization of biomass. The relation of these parameters will define the trends of the hydrodeoxygenation (HDO) process on biomass-derived compounds. We found the hydrogen and oxygen adsorption energies in the most stable site have a linear relation with electronic properties of these metals that will rationalize the surface's ability to bind the biomass-derived compounds and break the C–O bonds. This will accelerate the catalyst innovation for low temperature and efficient HDO processes on biomass derivates, e.g. guaiacol and anisole, among others. Among the monometallic catalysts explored, the scaling relationship pointed out that Ni has a promising balance between hydrogen and oxygen affinities according to the d -band centre and d -band width models. The comparison of the calculated descriptors to the adsorption strength of guaiacol on the investigated surfaces indicates that the d -band properties alone are not best suited to describe the trend. Instead, we found that a linear combination of work function and d -band properties gives significantly better correlation. This article is part of a discussion meeting issue ‘Science to enable the circular economy’.


2018 ◽  
Vol 22 (09n10) ◽  
pp. 771-776 ◽  
Author(s):  
Xin Chen ◽  
Chiming Wang ◽  
Yuxiang Chen ◽  
Dongdong Qi ◽  
Jianzhuang Jiang

The infrared spectra of tetrakis(dibutylamino) phthalocyanine and octakis(dibutylamino) compounds were studied via theoretical investigations. The results reveal deep fusion of the peripheral alkylamino moieties with the phthalocyanine chromophore in the tetrakis(dibutylamino)- but not in the octakis(dibutylamino)-phthalocyanine compounds. The successive localized molecular orbitals (LMO) and bond order analyses give support for the infrared vibrational results.


2020 ◽  
Author(s):  
Wu Tong ◽  
Bolong Huang ◽  
Pengtang Wang ◽  
Qi Shao ◽  
Xiaoqing Huang

Abstract Understanding the correlation between exposed surfaces and performances of controlled nanocatalysts can aid effective strategies to enhance electrocatalysis, but this is as yet unexplored for the nitrogen reduction reaction (NRR). Here, we first report controlled synthesis of well-defined Pt3Fe nanocrystals with tunable morphologies (nanocube, nanorod and nanowire) as ideal model electrocatalysts for investigating the NRR on different exposed facets. The detailed electrocatalytic studies reveal that the Pt3Fe nanocrystals exhibit shape-dependent NRR electrocatalysis. The optimized Pt3Fe nanowires bounded with high-index facets exhibit excellent selectivity (no N2H4 is detected), high activity with NH3 yield of 18.3 μg h−1 mg−1cat (0.52 μg h−1 cm−2ECSA; ECSA: electrochemical active surface area) and Faraday efficiency of 7.3% at −0.05 V versus reversible hydrogen electrode, outperforming the {200} facet-enclosed Pt3Fe nanocubes and {111} facet-enclosed Pt3Fe nanorods. They also show good stability with negligible activity change after five cycles. Density functional theory calculations reveal that, with high-indexed facet engineering, the Fe-3d band is an efficient d-d coupling correlation center for boosting the Pt 5d-electronic exchange and transfer activities towards the NRR.


2014 ◽  
Vol 19 (4) ◽  
pp. 235-240
Author(s):  
Jun Hu ◽  
Xiao-yong Fan ◽  
Chao-Ming Wang

The absorption and possible reaction paths during corrosion have been systematically identified at the molecular level by us-ing density functional theory calculations. The results show that the co-adsorbed water molecule has a two-fold impact on the corrosive kinetics process. The one is the solvation effect, where water molecule affects the various reactions through ion dipole interaction, without bond fracture and formation. Another is the H-transfer mediator, where the bond of co-adsorbed water molecule breaks and regenerates in order to transfer hydrogen atoms.


Sign in / Sign up

Export Citation Format

Share Document