bulk chemicals
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 43)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Chunying Wu ◽  
Xin Hui ◽  
Dan Zhang ◽  
Minghui Zhang ◽  
Yunbo Zhu ◽  
...  

We report a novel visible light-mediated protocol for polychlorination of alkenes by employing the commercially available bulk chemicals chloroform and chlorides. This methodology enables the installation of multiple chlorine atoms...


Author(s):  
Douglas Sachito ◽  
Luciana de Oliveira

Terpenes are the most abundant class of natural product that exist in nature. They possess a myriad of industrial applications including pharmaceutical, perfumery and flavors, bulk chemicals, and fuel. Intriguingly, until today, the vast majority of characterized terpenoids have been isolated from plants and fungi, and only in recent years bacteria were found to generate a representative reservoir of terpenoids molecules. Mining Streptomyces sp. CBMAI 2042 genome data has revealed the presence of five terpene cyclase genes. Chemical analysis of mycelium extract of this bacteria strain has unveiled at least 28 volatile terpenes molecules, where three encoding sesquiterpene cyclase (STC) genes are apparently responsible for their biosynthesis. The cyclic products obtained by incubation of these three purified recombinant STCs with farnesyl diphosphate (FPP) were analyzed by gas chromatography-mass spectrometry (GC-MS) and identified using the Van den Dool and Kratz equation.


ChemTexts ◽  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Baoxin Zhang ◽  
Dilver Peña Fuentes ◽  
Armin Börner

AbstractHydroformylation is one of the most important homogeneously catalyzed reactions on an industrial scale. The manufacture of bulk chemicals clearly dominates. Large cobalt- and rhodium-based processes are mature technologies that have been developed over the past 80 years. Meanwhile, the potential of hydroformylation for the production of fine chemicals (perfumes, pharmaceuticals) has also been recognized. This review gives insight into the state-of-the-art of the reaction and its development. It commences with some remarks on the accidental discovery by the German chemist Otto Roelen within the historical and personal framework of the Fischer–Tropsch process, followed by the mechanistic basics of the catalytic cycle, metals used for the catalyst as well as their organic ligands. In addition, the stability of ligands and catalysts is addressed. The huge potential of this transformation is demonstrated using a variety of substrates. Finally, the use of some surrogates for syngas is discussed.


2021 ◽  
Vol 11 (21) ◽  
pp. 10482
Author(s):  
Bernhard Drosg ◽  
Matthias Neubauer ◽  
Marceli Marzynski ◽  
Katharina Meixner

Starch production is mainly focused on feedstocks such as corn, wheat and potato in the EU, whereas cassava, rice, and other feedstocks are utilised worldwide. In starch production, a high amount of wastewater is generated, which accumulates from different process steps such as washing, steeping, starch refining, saccharification and derivatisation. Valorisation of these wastewaters can help to improve the environmental impact as well as the economics of starch production. Anaerobic fermentation is a promising approach, and this review gives an overview of the different utilisation concepts outlined in the literature and the state of the technology. Among bioenergy recovery processes, biogas technology is widely applied at the industrial scale, whereas biohydrogen production is used at the research stage. Starch wastewater can also be used for the production of bulk chemicals such as acetone, ethanol, butanol or lactic acids by anaerobic microbes.


2021 ◽  
Author(s):  
Marc Lehmann ◽  
Steven Brunt ◽  
John Wyper ◽  
Barry Jewson ◽  
Gaganjot Lamba ◽  
...  

Abstract The Ichthys Field is located approximately 220 km north-west of the coast of mainland Western Australia and 820 km south-west of Darwin. Gas from the Ichthys Field undergoes processing on an offshore central processing facility (CPF) to dehydrate the gas and remove a Rich MEG phase and condensate. The dry gas is compressed and sent to Darwin via a gas export pipeline while the condensate and MEG are pumped to an interlinked floating production, storage, and offtake facility (FPSO) with hydrocarbon processing capabilities. The FPSO also features the world's largest offshore MEG regeneration system. An integrated chemical supply chain has been developed to deliver bulk chemicals from the vendor chemical supply base in Darwin to the offshore facilities. Delivery is facilitated by specially designed platform supply vessels (PSV) that carry bulk chemicals in dedicated storage tanks and transferred to the offshore facilities using bulk transfer hoses. This paper details aspects of the chemical supply chain and describes best practices that have been developed to manage the safe delivery of bulk chemicals from the chemical supplier to the operator.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingen Li ◽  
Bingchen Chen ◽  
Shuying Gu ◽  
Zhen Zhao ◽  
Qian Liu ◽  
...  

Abstract Background Consolidated bioprocessing (CBP) technique is a promising strategy for biorefinery construction, producing bulk chemicals directly from plant biomass without extra hydrolysis steps. Fixing and channeling CO2 into carbon metabolism for increased carbon efficiency in producing value-added compounds is another strategy for cost-effective bio-manufacturing. It has not been reported whether these two strategies can be combined in one microbial platform. Results In this study, using the cellulolytic thermophilic fungus Myceliophthora thermophila, we designed and constructed a novel biorefinery system DMCC (Direct microbial conversion of biomass with CO2 fixation) through incorporating two CO2 fixation modules, PYC module and Calvin–Benson–Bassham (CBB) pathway. Harboring the both modules, the average rate of fixing and channeling 13CO2 into malic acid in strain CP51 achieved 44.4, 90.7, and 80.7 mg/L/h, on xylose, glucose, and cellulose, respectively. The corresponding titers of malic acid were up to 42.1, 70.4, and 70.1 g/L, respectively, representing the increases of 40%, 10%, and 7%, respectively, compared to the parental strain possessing only PYC module. The DMCC system was further improved by enhancing the pentose uptake ability. Using raw plant biomass as the feedstock, yield of malic acid produced by the DMCC system was up to 0.53 g/g, with 13C content of 0.44 mol/mol malic acid, suggesting DMCC system can produce 1 t of malic acid from 1.89 t of biomass and fix 0.14 t CO2 accordingly. Conclusions This study designed and constructed a novel biorefinery system named DMCC, which can convert raw plant biomass and CO2 into organic acid efficiently, presenting a promising strategy for cost-effective production of value-added compounds in biorefinery. The DMCC system is one of great options for realization of carbon neutral economy.


Resources ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 91
Author(s):  
Lisa Thormann ◽  
Ulf Neuling ◽  
Martin Kaltschmitt

The Circular Economy Action Plan, as part of the European Green Deal announced by the European Commission, is highly relevant to the chemical industry in relation to the production of sustainable products. Accordingly, the chemical industry faces the question of how far it can promote its own manufacture of sustainable products. Within this context, this article presents an approach on how to measure innovations in bioeconomy. The methodological framework developed provides the chemical industry with an approach to assess the effectiveness of innovative conversion technologies producing biogenic intermediate products (e.g., bulk chemicals). The innovations within the bioeconomy (TRL > 4; TRL—technology readiness level) are compared in terms of technical, economic, and environmental indicators for the current status, for the medium- and long-term as well as for different production sites. The methodological approach developed here is exemplarily applied, assessing the production of intermediate biogenic products via thermo-chemical conversion of lignocellulosic biomass. The results show the successful applicability of the developed assessment approach as well as significant differences in efficiency, costs, and environmental impact, both from the perspective of time and in spatial terms within the European Union. Thus, the methodological approach developed and presented enables the chemical industry to reduce challenges and to take advantage of the opportunities arising from the transition to a climate-neutral and circular economy.


2021 ◽  
Vol 50 ◽  
pp. 107766
Author(s):  
Pascal S. Leonov ◽  
Xavier Flores-Alsina ◽  
Krist V. Gernaey ◽  
Claus Sternberg

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Anna Tippelt ◽  
Markus Nett

AbstractAs a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.


Sign in / Sign up

Export Citation Format

Share Document