scholarly journals Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

2014 ◽  
Vol 5 ◽  
pp. 1441-1449 ◽  
Author(s):  
Ulrich Christian Fischer ◽  
Carsten Hentschel ◽  
Florian Fontein ◽  
Linda Stegemann ◽  
Christiane Hoeppener ◽  
...  

A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.

Langmuir ◽  
2008 ◽  
Vol 24 (17) ◽  
pp. 9241-9244 ◽  
Author(s):  
Mohammad Kamal Hossain ◽  
Toru Shimada ◽  
Masahiro Kitajima ◽  
Kohei Imura ◽  
Hiromi Okamoto

2019 ◽  
Author(s):  
Luke Clifton ◽  
Nicoló Paracini ◽  
Arwel V. Hughes ◽  
Jeremy H. Lakey ◽  
Nina-Juliane Seinke ◽  
...  

<p>We present a reliable method for the fabrication of fluid phase unsaturated bilayers which are readily self-assembled on charged self-assembled monolayer (SAM) surfaces producing high coverage floating supported bilayers where the membrane to surface distance could be controlled with nanometer precision. Vesicle fusion was used to deposit the bilayers onto anionic SAM coated surfaces. Upon assembly the bilayer to SAM solution interlayer thickness was 7-10 Å with evidence suggesting that this layer was present due to SAM hydration repulsion of the bilayer from the surface. This distance could be increased using low concentrations of salts which caused the interlayer thickness to enlarge to ~33 Å. Reducing the salt concentration resulted in a return to a shorter bilayer to surface distance. These accessible and controllable membrane models are well suited to a range of potential applications in biophysical studies, bio-sensors and Nano-technology.</p><br>


Sign in / Sign up

Export Citation Format

Share Document