Oxygen plasma treatment for wettability improvement of alkyl terminal self-assembled monolayer as gate dielectrics

Author(s):  
K. Kuribara ◽  
Y. Tanaka ◽  
T. Nobeshima ◽  
T. Kazasa ◽  
M. Yoshida
Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1804 ◽  
Author(s):  
Seong-Kun Cho ◽  
Won-Ju Cho

We investigated the effects of various high-k gate dielectrics as well as microwave annealing (MWA) calcination and a postcalcination oxygen plasma treatment on the electrical properties and stability of electrospun indium gallium zinc oxide (IGZO)-nanofiber (NF)-based field-effect transistors (FETs). We found that the higher the dielectric constant of the gate dielectric, the better the electric field is transferred, resulting in the better performance of the IGZO NF FET. In addition, the MWA-calcined IGZO NF FET was superior to the conventional furnace annealing-calcined device in terms of the electrical properties of the device and the operation of resistor-loaded inverter, and it was proved that the oxygen plasma treatment further improved the performance. The results of the gate bias temperature stress test confirmed that the MWA calcination process and postcalcination oxygen plasma treatment greatly improved the stability of the IGZO NF FET by reducing the number of defects and charge traps. This verified that the MWA calcination process and oxygen plasma treatment effectively remove the organic solvent and impurities that act as charge traps in the chemical analysis of NF using X-ray photoelectron spectroscopy. Furthermore, it was demonstrated through scanning electron microscopy and ultraviolet-visible spectrophotometer that the MWA calcination process and postcalcination oxygen plasma treatment also improve the morphological and optical properties of IGZO NF.


2020 ◽  
Vol 41 (3) ◽  
pp. 253-258
Author(s):  
王智栋 WANG Zhi-dong ◽  
刘 云 LIU Yun ◽  
彭新村 PENG Xin-cun ◽  
邹继军 ZOU Ji-jun ◽  
朱志甫 ZHU Zhi-fu ◽  
...  

2013 ◽  
Vol 347-350 ◽  
pp. 1535-1539
Author(s):  
Jian Jun Zhou ◽  
Liang Li ◽  
Hai Yan Lu ◽  
Ceng Kong ◽  
Yue Chan Kong ◽  
...  

In this letter, a high breakdown voltage GaN HEMT device fabricated on semi-insulating self-standing GaN substrate is presented. High quality AlGaN/GaN epilayer was grown on self-standing GaN substrate by metal organic chemical vapor deposition. A 0.8μm gate length GaN HEMT device was fabricated with oxygen plasma treatment. By using oxygen plasma treatment, gate forward working voltage is increased, and a breakdown voltage of more than 170V is demonstrated. The measured maximum drain current of the device is larger than 700 mA/mm at 4V gate bias voltage. The maximum transconductance of the device is 162 mS/mm. In addition, high frequency performance of the GaN HEMT device is also obtained. The current gain cutoff frequency and power gain cutoff frequency are 19.7 GHz and 32.8 GHz, respectively. A high fT-LG product of 15.76 GHzμm indicating that homoepitaxy technology is helpful to improve the frequency performance of the device.


RSC Advances ◽  
2014 ◽  
Vol 4 (50) ◽  
pp. 26240-26243 ◽  
Author(s):  
M. Gołda-Cępa ◽  
N. Aminlashgari ◽  
M. Hakkarainen ◽  
K. Engvall ◽  
A. Kotarba

A versatile parylene C coating for biomaterials was fabricated by the mild oxygen plasma treatment and examined by the use of LDI-MS..


2019 ◽  
Vol 463 ◽  
pp. 91-95 ◽  
Author(s):  
Vallivedu Janardhanam ◽  
Hyung-Joong Yun ◽  
Inapagundla Jyothi ◽  
Shim-Hoon Yuk ◽  
Sung-Nam Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document