scholarly journals A novel copper precursor for electron beam induced deposition

2018 ◽  
Vol 9 ◽  
pp. 1220-1227 ◽  
Author(s):  
Caspar Haverkamp ◽  
George Sarau ◽  
Mikhail N Polyakov ◽  
Ivo Utke ◽  
Marcos V Puydinger dos Santos ◽  
...  

A fluorine free copper precursor, Cu(tbaoac)2 with the chemical sum formula CuC16O6H26 is introduced for focused electron beam induced deposition (FEBID). FEBID with 15 keV and 7 nA results in deposits with an atomic composition of Cu:O:C of approximately 1:1:2. Transmission electron microscopy proved that pure copper nanocrystals with sizes of up to around 15 nm were dispersed inside the carbonaceous matrix. Raman investigations revealed a high degree of amorphization of the carbonaceous matrix and showed hints for partial copper oxidation taking place selectively on the surfaces of the deposits. Optical transmission/reflection measurements of deposited pads showed a dielectric behavior of the material in the optical spectral range. The general behavior of the permittivity could be described by applying the Maxwell–Garnett mixing model to amorphous carbon and copper. The dielectric function measured from deposited pads was used to simulate the optical response of tip arrays fabricated out of the same precursor and showed good agreement with measurements. This paves the way for future plasmonic applications with copper-FEBID.

Microscopy ◽  
2021 ◽  
Author(s):  
Te Shi ◽  
Shikai Liu ◽  
H Tian ◽  
Z J Ding

Abstract In transmission electron microscope (TEM), both the amplitude and the phase of electron beam change when electrons traverse a specimen. The amplitude is easily obtained by the square root of the intensity of a TEM image, while the phase affects defocused images. In order to obtain the phase map and verify the theoretical model of the interaction between electron beam and specimen, a lot of simulations have to be performed by researchers. In this work, we have simulated defocus images of a SiC nanowire in TEM with the method of electron optics. Mean inner potential and charge distribution on the nanowire have been considered in the simulation. Besides, due to electron scattering, coherence loss of the electron beam has been introduced. A dynamic process with Bayesian optimization was used in the simulation. With the infocus image as input and by adjusting fitting parameters, the defocus image is determined with a reasonable charge distribution. The calculated defocus images are in a good agreement with the experimental ones. Here, we present a complete solution and verification method for solving nanoscale charge distribution in TEM.


2015 ◽  
Vol 6 ◽  
pp. 1319-1331 ◽  
Author(s):  
Luis A Rodríguez ◽  
Lorenz Deen ◽  
Rosa Córdoba ◽  
César Magén ◽  
Etienne Snoeck ◽  
...  

Iron nanostructures grown by focused electron beam induced deposition (FEBID) are promising for applications in magnetic sensing, storage and logic. Such applications require a precise design and determination of the coercive field (H C), which depends on the shape of the nanostructure. In the present work, we have used the Fe2(CO)9 precursor to grow iron nanowires by FEBID in the thickness range from 10 to 45 nm and width range from 50 to 500 nm. These nanowires exhibit an Fe content between 80 and 85%, thus giving a high ferromagnetic signal. Magneto-optical Kerr characterization indicates that H C decreases for increasing thickness and width, providing a route to control the magnetization reversal field through the modification of the nanowire dimensions. Transmission electron microscopy experiments indicate that these wires have a bell-type shape with a surface oxide layer of about 5 nm. Such features are decisive in the actual value of H C as micromagnetic simulations demonstrate. These results will help to make appropriate designs of magnetic nanowires grown by FEBID.


2013 ◽  
Vol 4 ◽  
pp. 77-86 ◽  
Author(s):  
Xiaoxing Ke ◽  
Carla Bittencourt ◽  
Sara Bals ◽  
Gustaaf Van Tendeloo

Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.


2017 ◽  
Vol 8 ◽  
pp. 801-812 ◽  
Author(s):  
Brett B Lewis ◽  
Robert Winkler ◽  
Xiahan Sang ◽  
Pushpa R Pudasaini ◽  
Michael G Stanford ◽  
...  

We investigate the growth, purity, grain structure/morphology, and electrical resistivity of 3D platinum nanowires synthesized via electron beam induced deposition with and without an in situ pulsed laser assist process which photothermally couples to the growing Pt–C deposits. Notably, we demonstrate: 1) higher platinum concentration and a coalescence of the otherwise Pt–C nanogranular material, 2) a slight enhancement in the deposit resolution and 3) a 100-fold improvement in the conductivity of suspended nanowires grown with the in situ photothermal assist process, while retaining a high degree of shape fidelity.


Sign in / Sign up

Export Citation Format

Share Document