scholarly journals Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

2018 ◽  
Vol 9 ◽  
pp. 2953-2959 ◽  
Author(s):  
Majid Fazeli Jadidi ◽  
Umut Kamber ◽  
Oğuzhan Gürlü ◽  
H Özgür Özer

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) images of graphene reveal either a triangular or honeycomb pattern at the atomic scale depending on the imaging parameters. The triangular patterns at the atomic scale are particularly difficult to interpret, as the maxima in the images could be every other carbon atom in the six-fold hexagonal array or even a hollow site. Carbon sites exhibit an inequivalent electronic structure in HOPG or multilayer graphene due to the presence of a carbon atom or a hollow site underneath. In this work, we report small-amplitude, simultaneous STM/AFM imaging using a metallic (tungsten) tip, of the graphene surface as-grown by chemical vapor deposition (CVD) on Cu foils. Truly simultaneous operation is possible only with the use of small oscillation amplitudes. Under a typical STM imaging regime the force interaction is found to be repulsive. Force–distance spectroscopy revealed a maximum attractive force of about 7 nN between the tip and carbon/hollow sites. We obtained different contrast between force and STM topography images for atomic features. A honeycomb pattern showing all six carbon atoms is revealed in AFM images. In one contrast type, simultaneously acquired STM topography revealed hollow sites to be brighter. In another, a triangular array with maxima located in between the two carbon atoms was acquired in STM topography.

1995 ◽  
Vol 3 (4) ◽  
pp. 6-7
Author(s):  
Stephen W. Carmichael

For biologic studies, atomic force microscopy (AFM) has been prevailing over scanning tunneling microscopy (STM) because it has the capability of imaging non-conducting biologic specimens. However, STM generally gives better resolution than AFM, and we're talking about resolution on the atomic scale. In a recent article, Franz Giessibl (Atomic resolution of the silicon (111)- (7X7) surface by atomic force microscopy, Science 267:68-71, 1995) has demonstrated that atoms can be imaged by AFM.


2017 ◽  
Vol 114 (13) ◽  
pp. E2556-E2562 ◽  
Author(s):  
Martin Setvin ◽  
Jan Hulva ◽  
Gareth S. Parkinson ◽  
Michael Schmid ◽  
Ulrike Diebold

Activation of molecular oxygen is a key step in converting fuels into energy, but there is precious little experimental insight into how the process proceeds at the atomic scale. Here, we show that a combined atomic force microscopy/scanning tunneling microscopy (AFM/STM) experiment can both distinguish neutral O2 molecules in the triplet state from negatively charged (O2)− radicals and charge and discharge the molecules at will. By measuring the chemical forces above the different species adsorbed on an anatase TiO2 surface, we show that the tip-generated (O2)− radicals are identical to those created when (i) an O2 molecule accepts an electron from a near-surface dopant or (ii) when a photo-generated electron is transferred following irradiation of the anatase sample with UV light. Kelvin probe spectroscopy measurements indicate that electron transfer between the TiO2 and the adsorbed molecules is governed by competition between electron affinity of the physisorbed (triplet) O2 and band bending induced by the (O2)− radicals. Temperature–programmed desorption and X-ray photoelectron spectroscopy data provide information about thermal stability of the species, and confirm the chemical identification inferred from AFM/STM.


2004 ◽  
Vol 12 (5) ◽  
pp. 12-15
Author(s):  
Sergei Magonov

The invention of scanning tunneling microscopy (STM) in 1982 revolutionized surface analysis by providing atomic-scale surface imaging of conducting and semiconducting materials. Shortly after that, atomic force microscopy (AFM) was introduced as an accessory of STM for high-resolution imaging of surfaces independent of their conductivity. Mechanical force interactions between a sharp tip placed at one end of a micro fabricated cantilever and a sample surface were employed for imaging in this method. In the past decade, AFM has developed into a leading scanning probe technique applied in many fields of fundamental and industrial research. The progress of AFM has been made possible by implementation of an optical level detection scheme, which allows precise measuring of the cantilever deflection caused by the tip-sample forces, by mass microfabrication of probes consisting of cantilevers, and by developments of oscillatory imaging modes, particularly, Tapping ModeTM.


2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


1993 ◽  
Vol 32 (Part 1, No. 12B) ◽  
pp. 6200-9202 ◽  
Author(s):  
Katsuhiro Uesugi ◽  
Takaharu Takiguchi ◽  
Michiyoshi Izawa ◽  
Masamichi Yoshimura ◽  
Takafumi Yao

Sign in / Sign up

Export Citation Format

Share Document