scholarly journals High-Resolution Imaging with Atomic Force Microscopy

2004 ◽  
Vol 12 (5) ◽  
pp. 12-15
Author(s):  
Sergei Magonov

The invention of scanning tunneling microscopy (STM) in 1982 revolutionized surface analysis by providing atomic-scale surface imaging of conducting and semiconducting materials. Shortly after that, atomic force microscopy (AFM) was introduced as an accessory of STM for high-resolution imaging of surfaces independent of their conductivity. Mechanical force interactions between a sharp tip placed at one end of a micro fabricated cantilever and a sample surface were employed for imaging in this method. In the past decade, AFM has developed into a leading scanning probe technique applied in many fields of fundamental and industrial research. The progress of AFM has been made possible by implementation of an optical level detection scheme, which allows precise measuring of the cantilever deflection caused by the tip-sample forces, by mass microfabrication of probes consisting of cantilevers, and by developments of oscillatory imaging modes, particularly, Tapping ModeTM.

2021 ◽  
Vol 03 (02) ◽  
pp. 128-133
Author(s):  
Zijie Qiu ◽  
Qiang Sun ◽  
Shiyong Wang ◽  
Gabriela Borin Barin ◽  
Bastian Dumslaff ◽  
...  

Intramolecular methyl–methyl coupling on Au (111) is explored as a new on-surface protocol for edge extension in graphene nanoribbons (GNRs). Characterized by high-resolution scanning tunneling microscopy, noncontact atomic force microscopy, and Raman spectroscopy, the methyl–methyl coupling is proven to indeed proceed at the armchair edges of the GNRs, forming six-membered rings with sp3- or sp2-hybridized carbons.


1995 ◽  
Vol 3 (4) ◽  
pp. 6-7
Author(s):  
Stephen W. Carmichael

For biologic studies, atomic force microscopy (AFM) has been prevailing over scanning tunneling microscopy (STM) because it has the capability of imaging non-conducting biologic specimens. However, STM generally gives better resolution than AFM, and we're talking about resolution on the atomic scale. In a recent article, Franz Giessibl (Atomic resolution of the silicon (111)- (7X7) surface by atomic force microscopy, Science 267:68-71, 1995) has demonstrated that atoms can be imaged by AFM.


Sign in / Sign up

Export Citation Format

Share Document