scholarly journals Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

2015 ◽  
Vol 11 ◽  
pp. 446-468 ◽  
Author(s):  
Tor E Kristensen

Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of catalytically active macromolecular networks in the form of soluble polymers, crosslinked polymer beads or nanoparticulate systems. The objective of the present review is to increase awareness of the existence and convenience of this methodology, assess its competitiveness compared to newer and more elaborate procedures for chemoselective O-acylation reactions, spur its further development, and finally to chronicle the informative, but poorly documented history of its development.

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 671
Author(s):  
Chad M. Bernier ◽  
Joseph S. Merola

A series of chiral complexes of the form Ir(NHC)2(aa)(H)(X) (NHC = N-heterocyclic carbene, aa = chelated amino acid, X = halide) was synthesized by oxidative addition of -amino acids to iridium(I) bis-NHC compounds and screened for asymmetric transfer hydrogenation of ketones. Following optimization of the reaction conditions, NHC, and amino acid ligands, high enantioselectivity was achieved when employing the Ir(IMe)2(l-Pro)(H)(I) catalyst (IMe = 1,3-dimethylimidazol-2-ylidene), which asymmetrically reduces a range of acetophenone derivatives in up to 95% enantiomeric excess.


1996 ◽  
Vol 61 (2) ◽  
pp. 288-297 ◽  
Author(s):  
Vladimír Pouzar ◽  
Ivan Černý

New approach to the preparation of steroids with connecting bridge, based on an O-carboxymethyloxime (CMO) structure, and with terminal hydroxy group, is presented. 17-CMO derivatives of 3β-acetoxy- and 3β-methoxymethoxyandrost-5-en-17-one were condensed with α,ω-amino alcohols to give derivatives with a chain of seven to nine atoms. After THP-protection, these compounds were converted to 3-keto-4-ene derivatives. An alternative synthesis consisted in transformation of 17-CMO derivatives with bonded amino acids by reduction of the terminal carboxyl. The resulting compounds were designed as building blocks for the preparation of bis-haptens for sandwich immunoassays.


1970 ◽  
Vol 48 (1) ◽  
pp. 163-175 ◽  
Author(s):  
R. M. Genik-Sas-Berezowsky ◽  
I. H. Spinner

Two new chelating monomers, N-(p-vinylbenzenesulfonyl)1,2-diaminoethane-N′,N′-diacetic (SS-EDDA) and -N,N′,N′-triacetic (SS-ED3A) acids, as well as several monomeric analogues and related intermediates have been prepared. In addition, 2-oxo-1-piperazine acetic (S-KP), 3-oxo-1-piperazine acetic (U-KP), and 2-oxo-1,4-piperazine diacetic (3-KP) acids have been synthesized and the interconvertibility between these cyclic amides and their unsubstituted linear amino acid analogues, ethylene-diamine-N,N′-diacetic (S-EDDA), -N,N-diacetic (U-EDDA), and -N,N,N′-triacetic (ED3A) acids respectively, was demonstrated.The acid dissociation constants of the various amino acids were determined potentiometrically at 25° and μ = 0.1 M(KNO3) and the results were compared with the hydrogen ion affinities of related compounds. Dissociation schemes were proposed for all the compounds based on these results. Rationalizations of the linear amino acid and the cyclic amide dissociation constants were made in terms of the effects of cyclization and the inductive effects of neighboring groups. These rationalizations were found to be helpful in clarifying the dissociation schemes previously proposed for several of the linear amino acids.


1968 ◽  
Vol 46 (8) ◽  
pp. 797-806 ◽  
Author(s):  
N. Rosa ◽  
A. C. Neish

Shoots of barley seedlings when fed D-phenylalanine convert the amino acid to N-malonylphenylalanine. Some N-acetylphenylalanine is obtained at the same time but this may be an artifact of the isolation procedure since it is readily formed by decarboxylation of the malonylphenylalanine. Feeding experiments with the D- and L-isomers of phenylalanine, valine, leucine, isoleucine, tyrosine, tryptophan, alanine, and glutamic acid showed that barley shoots form the malonyl derivative from all the D-isomers whereas little, if any, is formed from the L-isomers. Similar experiments with phenylalanine and leucine isomers, using seven different plant species, showed that the ability to conjugate the D-isomers (but not the L-isomers) was found in all of the plants tested. It was also observed that the ether-soluble acidic conjugates of a variety of amino acids, possibly malonyl derivatives, occur widely throughout the plant kingdom.


1962 ◽  
Vol 202 (3) ◽  
pp. 577-583 ◽  
Author(s):  
William A. Webber

The effects of intravenous infusions of a variety of neutral and acidic amino acids on the plasma concentrations and excretions of naturally occurring amino acids were studied in dogs. Conventional clearance techniques were used, and the amino acid concentrations were determined by ion exchange column chromatography. Infusion of either l-glutamic acid or l-aspartic acid caused a gross increase in the plasma concentration and excretion of the other. Infusions of neutral amino acids including glycine, l-alanine, l-leucine, l-methionine, l-proline, and l-phenylalanine caused some minor changes in the endogenous plasma amino acid concentrations. They produced increases in the excretion of other neutral amino acids and, in some cases, of acidic and basic amino acids as well. In general, amino acids with long side chains were most effective in inhibiting reabsorption while cyclic side-chain compounds were less effective. There appear to be at least three somewhat separable mechanisms for renal tubular reabsorption of amino acids in dogs.


Sign in / Sign up

Export Citation Format

Share Document