scholarly journals Naphthalonitriles featuring efficient emission in solution and in the solid state

2020 ◽  
Vol 16 ◽  
pp. 2960-2970
Author(s):  
Sidharth Thulaseedharan Nair Sailaja ◽  
Iván Maisuls ◽  
Jutta Kösters ◽  
Alexander Hepp ◽  
Andreas Faust ◽  
...  

In this work, a series of γ-substituted diphenylnaphthalonitriles were synthesized and characterized. They show efficient emission in solution and in the aggregated state and their environment responsiveness is based on having variable substituents at the para-position of the two phenyl moieties. The excited state properties were fully investigated in tetrahydrofuran (THF) solutions and in THF/H2O mixtures. The size of the aggregates in aqueous media were measured by dynamic light scattering (DLS). The steady-state and time-resolved photoluminescence spectroscopy studies revealed that all the molecules show intense fluorescence both in solution and in the aggregated state. In THF solutions, a blue emission was observed for the unsubstituted (H), methyl- (Me) and tert-butyl- (t-Bu) substituted γ-diphenylnaphthalonitriles, which can be attributed to a weak π-donor capability of these groups. On the other hand, the methoxy- (OMe), methylsulfanyl- (SMe) and dimethylamino- (NMe2) substituted compounds exhibit a progressive red-shift in emission compared to H, Me and t-Bu due to a growing π-electron donating capability. Interestingly, upon aggregation in water-containing media, H, Me and t-Bu show a slight red-shift of the emission and a blue-shift is observed for OMe, SMe and NMe2. The crystal structure of Me allowed a detailed discussion of the structure–property relationship. Clearly, N-containing substituents such as NMe2 possess more electron-donating ability than the S-based moieties such as SMe. Moreover, it was found that NMe2 showed higher luminescence quantum yields (ΦF) in comparison to SMe, indicating that N-substituted groups could enhance the fluorescence intensity. Therefore, the π-donor nature of the substituents on the phenyl ring constitutes the main parameter that influences the photophysical properties, such as excited state lifetimes and photoluminescence quantum yields. Hence, a series of highly luminescent materials from deep blue to red emission depending on substitution and environment is reported with potential applications in sensing, bioimaging and optoelectronics.

RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 70085-70090 ◽  
Author(s):  
Haichao Liu ◽  
Qing Bai ◽  
Weijun Li ◽  
Yachen Guo ◽  
Liang Yao ◽  
...  

Acceptor–donor–acceptor triphenylamine–phenanthroimidazole derivate (TPA–2PPI) servers as an emitter, whose device exhibits deep-blue emission, high efficiency and slow roll-off of efficiency.


2018 ◽  
Vol 20 (17) ◽  
pp. 11867-11875 ◽  
Author(s):  
Iain A. Wright ◽  
Hameed A. Al-Attar ◽  
Andrei S. Batsanov ◽  
Andrew P. Monkman ◽  
Martin R. Bryce

Twelve bicarbazole derivatives with emission ranging from blue-green to deep-blue, and ET 2.6–3.0 eV.


Molecules ◽  
2020 ◽  
Vol 25 (4) ◽  
pp. 824
Author(s):  
Lara Martinez-Fernandez ◽  
Thomas Gustavsson ◽  
Ulf Diederichsen ◽  
Roberto Improta

The fluorescent base guanine analog, 8-vinyl-deoxyguanosine (8vdG), is studied in solution using a combination of optical spectroscopies, notably femtosecond fluorescence upconversion and quantum chemical calculations, based on time-dependent density functional theory (TD-DFT) and including solvent effect by using a mixed discrete-continuum model. In all investigated solvents, the fluorescence is very long lived (3–4 ns), emanating from a stable excited state minimum with pronounced intramolecular charge-transfer character. The main non-radiative decay channel features a sizeable energy barrier and it is affected by the polarity and the H-bonding properties of the solvent. Calculations provide a picture of dynamical solvation effects fully consistent with the experimental results and show that the photophysical properties of 8vdG are modulated by the orientation of the vinyl group with respect to the purine ring, which in turn depends on the solvent. These findings may have importance for the understanding of the fluorescence properties of 8vdG when incorporated in a DNA helix.


2017 ◽  
Vol 865 ◽  
pp. 60-63
Author(s):  
Ning Wang ◽  
Xiao Dan Hu

In this paper, we reported one vinylfluorene derivative 9,9-dihexyl-vinylfluorene and its corresponding polymers. The monomer and polymers were characterized by NMR, UV-Vis, PL and Gel Permeation Chromatography (GPC). Compared with the monomer, the polymers showed blue-shift in UV-Vis spectra but red-shift in PL spedtra. This kind of side-chain polyfluorenes could be candidates of blue OLED, organic solar cells, and so on.


2008 ◽  
Vol 12 (12) ◽  
pp. 1232-1241 ◽  
Author(s):  
Farid Aziat ◽  
Régis Rein ◽  
Jorge Peón ◽  
Ernesto Rivera ◽  
Nathalie Solladié

In this paper we now report our ongoing progress in the preparation of artificial photosynthetic systems through the preparation of light harvesting multi-porphyrins. A tetramer, constituted of a central dipeptide functionalized by two free-base porphyrins and surrounded by one amino-acid bearing a pendant Zn ( II ) porphyrin on each side, has been chosen. The optical and photophysical properties of this tetramer have been studied by absorption and fluorescence spectroscopy. In addition, the energy transfer phenomenon has been studied and monitored by femtosecond time-resolved fluorescence. Our results indicate that the excited state dynamics redounding in the excitation being localized in the inner free-base porphyrins takes place in the time scale of approximately 1 ps.


2017 ◽  
Vol 196 ◽  
pp. 131-142 ◽  
Author(s):  
Vinod Kumar Gupta ◽  
Ram Adhar Singh

Organic D–π–A materials, possessing intramolecular charge transfer, have attracted much scientific attention in recent years because of their potential applications in the development of organic light emitting devices (OLEDs). Two new compounds, A1 and A2, having a D–π–A skeleton have been synthesized and single crystals were grown by the solution growth technique. Both compounds were characterized for crystallographic, thermal and photophysical properties. Upon photo-excitation in the solid state, A1 showed very strong green light emission while A2 gave sky-blue emission with much lower intensity. A single crystal X-ray diffraction study revealed that in the crystal lattice of A1, both the donor and acceptor groups are involved in the intermolecular interactions. This results in the restricted intramolecular rotation (RIR) of the D and A moieties, and enables A1 to emit more intensely in the solid state due to aggregation-induced emission (AIE). Intense green light emission, along with a good crystalline nature indicates that A1 might be a potential candidate for opto-electronic devices.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3904
Author(s):  
Kaveendra Maduwantha ◽  
Shigeyuki Yamada ◽  
Kaveenga Rasika Koswattage ◽  
Tsutomu Konno ◽  
Takuya Hosokai

Room-temperature phosphorescent (RTP) materials have been attracting tremendous interest, owing to their unique material characteristics and potential applications for state-of-the-art optoelectronic devices. Recently, we reported the synthesis and fundamental photophysical properties of new RTP materials based on benzil, i.e., fluorinated monobenzil derivative and fluorinated and non-fluorinated bisbenzil derivative analogues [Yamada, S. et al., Beilstein J. Org. Chem. 2020, 16, 1154–1162.]. To deeply understand their RTP properties, we investigated the excited-state dynamics and photostability of the derivatives by means of time-resolved and steady-state photoluminescence spectroscopies. For these derivatives, clear RTP emissions with lifetimes on the microsecond timescale were identified. Among them, the monobenzil derivative was found to be the most efficient RTP material, showing both the longest lifetime and highest amplitude RTP emission. Time-resolved photoluminescence spectra, measured at 77 K, and density functional theory calculations revealed the existence of a second excited triplet state in the vicinity of the first excited singlet state for the monobenzil derivative, indicative of the presence of a fast intersystem crossing pathway. The correlation between the excited state dynamics, emission properties, and conformational flexibility of the three derivatives is discussed.


2020 ◽  
Vol 44 (22) ◽  
pp. 9557-9564
Author(s):  
Noorullah Baig ◽  
Suchetha Shetty ◽  
Sadiara Fall ◽  
Saleh Al-Mousawi ◽  
Thomas Heiser ◽  
...  

Excellent yields, high stability and solubility. Mw = 36.5–152.0 kDa and Đ = 2.5–3.0. Deep-blue emission with quantum yields up to 17%.


2015 ◽  
Vol 17 (20) ◽  
pp. 13245-13256 ◽  
Author(s):  
Dariusz M. Niedzwiedzki ◽  
Laura Cranston

Photophysical properties of two typical aryl carotenoids, okenone and chlorobactene, were studied with application of femtosecond and microsecond time-resolved absorption spectroscopies.


Sign in / Sign up

Export Citation Format

Share Document