scholarly journals Iron-catalyzed domino coupling reactions of π-systems

2021 ◽  
Vol 17 ◽  
pp. 2848-2893
Author(s):  
Austin Pounder ◽  
William Tam

The development of environmentally benign, inexpensive, and earth-abundant metal catalysts is desirable from both an ecological and economic standpoint. Certainly, in the past couple decades, iron has become a key player in the development of sustainable coupling chemistry and has become an indispensable tool in organic synthesis. Over the last ten years, organic chemistry has witnessed substantial improvements in efficient synthesis because of domino reactions. These protocols are more atom-economic, produce less waste, and demand less time compared to a classical stepwise reaction. Although iron-catalyzed domino reactions require a mindset that differs from the more routine noble-metal, homogenous iron catalysis they bear the chance to enable coupling reactions that rival that of noble-metal-catalysis. This review provides an overview of iron-catalyzed domino coupling reactions of π-systems. The classifications and reactivity paradigms examined should assist readers and provide guidance for the design of novel domino reactions.

2019 ◽  
Vol 16 (2) ◽  
pp. 258-275 ◽  
Author(s):  
Navjeet Kaur

Background:A wide variety of biological activities are exhibited by N, O and S containing heterocycles and recently, many reports appeared for the synthesis of these heterocycles. The synthesis of heterocycles with the help of metal and non-metal catalyst has become a highly rewarding and important method in organic synthesis. This review article concentrated on the synthesis of S-heterocylces in the presence of metal and non-metal catalyst. The synthesis of five-membered S-heterocycles is described here.Objective:There is a need for the development of rapid, efficient and versatile strategy for the synthesis of heterocyclic rings. Metal, non-metal and organocatalysis involving methods have gained prominence because traditional conditions have disadvantages such as long reaction times, harsh conditions and limited substrate scope.Conclusion:The metal-, non-metal-, and organocatalyst assisted organic synthesis is a highly dynamic research field. For ßthe chemoselective and efficient synthesis of heterocyclic molecules, this protocol has emerged as a powerful route. Various methodologies in the past few years have been pointed out to pursue more sustainable, efficient and environmentally benign procedures and products. Among these processes, the development of new protocols (catalysis), which avoided the use of toxic reagents, are the focus of intense research.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1349 ◽  
Author(s):  
Arnar Guðmundsson ◽  
Jan-E. Bäckvall

Transition metal catalysis in modern organic synthesis has largely focused on noble transition metals like palladium, platinum and ruthenium. The toxicity and low abundance of these metals, however, has led to a rising focus on the development of the more sustainable base metals like iron, copper and nickel for use in catalysis. Iron is a particularly good candidate for this purpose due to its abundance, wide redox potential range, and the ease with which its properties can be tuned through the exploitation of its multiple oxidation states, electron spin states and redox potential. This is a fact made clear by all life on Earth, where iron is used as a cornerstone in the chemistry of living processes. In this mini review, we report on the general advancements in the field of iron catalysis in organic chemistry covering addition reactions, C-H activation, cross-coupling reactions, cycloadditions, isomerization and redox reactions.


Synthesis ◽  
2018 ◽  
Vol 51 (14) ◽  
pp. 2829-2838 ◽  
Author(s):  
Attila Kunfi ◽  
Gábor London

Polydopamine, a ‘mussel-inspired’ polymer, has been explored extensively in materials science as a universal coating. However, as an easily available, stable and environmentally benign material, it has recently been discovered to demonstrate catalytic applications. In this short review, we briefly discuss the main approaches employing polydopamine in the catalysis of organic transformations. These include metal/polydopamine-type systems and metal-free approaches that exploit the acid/base properties of this versatile polymer.1 Introduction2 PDA and Metal Catalysis2.1 Reduction of Nitroaryl Compounds to Anilines2.2 Reduction of Carbonyl Compounds to Alcohols2.3 Suzuki and Heck Coupling Reactions2.4 Other Reactions Catalyzed by M/PDA-Type Systems3 PDA as a Catalyst Itself4 Conclusion


2021 ◽  
Author(s):  
Stefan Leisering ◽  
Alexandros Mavroskoufis ◽  
Patrick Voßnacker ◽  
Reinhold Zimmer ◽  
Mathias Christmann

A protecting-group-free synthesis of two endoperoxide natural products, plakortolide E and plakortolide I, is reported. Key-steps feature the use of earth-abundant transition metals, consisting of a vanadium-mediated epoxidation, an iron-catalyzed allylic substitution, and a cobalt-induced endoperoxide formation. Our approach combines redox-economy, chemoselective bond-forming reactions, and telescoping into one-pot operations to forge an overall efficient synthesis.


2020 ◽  
Vol 56 (12) ◽  
pp. 1819-1822 ◽  
Author(s):  
Hui Wang ◽  
Ge Zhang ◽  
Qian Zhang ◽  
Ying Wang ◽  
Yanfei Li ◽  
...  

The non-directed hydrosilylation of cyclopropenes with earth-abundant and environmentally benign base metal catalysis was described.


2021 ◽  
Author(s):  
Stefan Leisering ◽  
Alexandros Mavroskoufis ◽  
Patrick Voßnacker ◽  
Reinhold Zimmer ◽  
Mathias Christmann

A protecting-group-free synthesis of two endoperoxide natural products, plakortolide E and plakortolide I, is reported. Key-steps feature the use of earth-abundant transition metals, consisting of a vanadium-mediated epoxidation, an iron-catalyzed allylic substitution, and a cobalt-induced endoperoxide formation. Our approach combines redox-economy, chemoselective bond-forming reactions, and telescoping into one-pot operations to forge an overall efficient synthesis.


2021 ◽  
Author(s):  
Qingmin Liu ◽  
Shangbin Jin ◽  
Bien Tan

The synthesis of conjugated microporous polymers (CMPs) has been heavily relied on transition-metal-catalysis carbon-carbon coupling reactions, which has shortages in the scarcity and high cost of the noble metal catalysts....


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Giyaullah Habibullah ◽  
Jitka Viktorova ◽  
Tomas Ruml

AbstractNoble metals have played an integral part in human history for centuries; however, their integration with recent advances in nanotechnology and material sciences have provided new research opportunities in both academia and industry, which has resulted in a new array of advanced applications, including medical ones. Noble metal nanoparticles (NMNPs) have been of great importance in the field of biomedicine over the past few decades due to their importance in personalized healthcare and diagnostics. In particular, platinum, gold and silver nanoparticles have achieved the most dominant spot in the list, thanks to a very diverse range of industrial applications, including biomedical ones such as antimicrobial and antiviral agents, diagnostics, drug carriers and imaging probes. In particular, their superior resistance to extreme conditions of corrosion and oxidation is highly appreciated. Notably, in the past two decades there has been a tremendous advancement in the development of new strategies of more cost-effective and robust NMNP synthesis methods that provide materials with highly tunable physicochemical, optical and thermal properties, and biochemical functionalities. As a result, new advanced hybrid NMNPs with polymer, graphene, carbon nanotubes, quantum dots and core–shell systems have been developed with even more enhanced physicochemical characteristics that has led to exceptional diagnostic and therapeutic applications. In this review, we aim to summarize current advances in the synthesis of NMNPs (Au, Ag and Pt).


1977 ◽  
Vol 8 (45) ◽  
pp. no-no
Author(s):  
D. M. FENTON ◽  
E. R. FETT ◽  
E. C. SCHLUTER

Sign in / Sign up

Export Citation Format

Share Document