scholarly journals Sensory-Cognitive Interaction in the Neural Encoding of Speech in Noise: A Review

2010 ◽  
Vol 21 (09) ◽  
pp. 575-585 ◽  
Author(s):  
Samira Anderson ◽  
Nina Kraus

Background: Speech-in-noise (SIN) perception is one of the most complex tasks faced by listeners on a daily basis. Although listening in noise presents challenges for all listeners, background noise inordinately affects speech perception in older adults and in children with learning disabilities. Hearing thresholds are an important factor in SIN perception, but they are not the only factor. For successful comprehension, the listener must perceive and attend to relevant speech features, such as the pitch, timing, and timbre of the target speaker's voice. Here, we review recent studies linking SIN and brainstem processing of speech sounds. Purpose: To review recent work that has examined the ability of the auditory brainstem response to complex sounds (cABR), which reflects the nervous system's transcription of pitch, timing, and timbre, to be used as an objective neural index for hearing-in-noise abilities. Study Sample: We examined speech-evoked brainstem responses in a variety of populations, including children who are typically developing, children with language-based learning impairment, young adults, older adults, and auditory experts (i.e., musicians). Data Collection and Analysis: In a number of studies, we recorded brainstem responses in quiet and babble noise conditions to the speech syllable /da/ in all age groups, as well as in a variable condition in children in which /da/ was presented in the context of seven other speech sounds. We also measured speech-in-noise perception using the Hearing-in-Noise Test (HINT) and the Quick Speech-in-Noise Test (QuickSIN). Results: Children and adults with poor SIN perception have deficits in the subcortical spectrotemporal representation of speech, including low-frequency spectral magnitudes and the timing of transient response peaks. Furthermore, auditory expertise, as engendered by musical training, provides both behavioral and neural advantages for processing speech in noise. Conclusions: These results have implications for future assessment and management strategies for young and old populations whose primary complaint is difficulty hearing in background noise. The cABR provides a clinically applicable metric for objective assessment of individuals with SIN deficits, for determination of the biologic nature of disorders affecting SIN perception, for evaluation of appropriate hearing aid algorithms, and for monitoring the efficacy of auditory remediation and training.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Samira Anderson ◽  
Nina Kraus

Hearing aid technology has improved dramatically in the last decade, especially in the ability to adaptively respond to dynamic aspects of background noise. Despite these advancements, however, hearing aid users continue to report difficulty hearing in background noise and having trouble adjusting to amplified sound quality. These difficulties may arise in part from current approaches to hearing aid fittings, which largely focus on increased audibility and management of environmental noise. These approaches do not take into account the fact that sound is processed all along the auditory system from the cochlea to the auditory cortex. Older adults represent the largest group of hearing aid wearers; yet older adults are known to have deficits in temporal resolution in the central auditory system. Here we review evidence that supports the use of the auditory brainstem response to complex sounds (cABR) in the assessment of hearing-in-noise difficulties and auditory training efficacy in older adults.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marina Saiz-Alía ◽  
Antonio Elia Forte ◽  
Tobias Reichenbach

Abstract People with normal hearing thresholds can nonetheless have difficulty with understanding speech in noisy backgrounds. The origins of such supra-threshold hearing deficits remain largely unclear. Previously we showed that the auditory brainstem response to running speech is modulated by selective attention, evidencing a subcortical mechanism that contributes to speech-in-noise comprehension. We observed, however, significant variation in the magnitude of the brainstem’s attentional modulation between the different volunteers. Here we show that this variability relates to the ability of the subjects to understand speech in background noise. In particular, we assessed 43 young human volunteers with normal hearing thresholds for their speech-in-noise comprehension. We also recorded their auditory brainstem responses to running speech when selectively attending to one of two competing voices. To control for potential peripheral hearing deficits, and in particular for cochlear synaptopathy, we further assessed noise exposure, the temporal sensitivity threshold, the middle-ear muscle reflex, and the auditory-brainstem response to clicks in various levels of background noise. These tests did not show evidence for cochlear synaptopathy amongst the volunteers. Furthermore, we found that only the attentional modulation of the brainstem response to speech was significantly related to speech-in-noise comprehension. Our results therefore evidence an impact of top-down modulation of brainstem activity on the variability in speech-in-noise comprehension amongst the subjects.


2011 ◽  
Vol 21 (2) ◽  
pp. 50-58
Author(s):  
James W. Hall ◽  
Anuradha R. Bantwal

Early identification and diagnosis of hearing loss in infants and young children is the first step toward appropriate and effective intervention and is critical for optimal communicative and psychosocial development. Limitations of behavioral assessment techniques in pediatric populations necessitate the use of an objective test battery to enable complete and accurate assessment of auditory function. Since the introduction of the cross-check principle 35 years ago, the pediatric diagnostic test battery has expanded to include, in addition to behavioral audiometry, acoustic immittance measures, otoacoustic emissions, and multiple auditory evoked responses (auditory brainstem response, auditory steady state response, and electrocochleography). We offer a concise description of a modern evidence-based audiological test battery that permits early and accurate diagnosis of auditory dysfunction.


2021 ◽  
Vol 11 (1) ◽  
pp. 38-46
Author(s):  
Fan-Yin Cheng ◽  
Craig A. Champlin

Temporal acuity is the ability to differentiate between sounds based on fluctuations in the waveform envelope. The proximity of successive sounds and background noise diminishes the ability to track rapid changes between consecutive sounds. We determined whether a physiological correlate of temporal acuity is also affected by these factors. We recorded the auditory brainstem response (ABR) from human listeners using a harmonic complex (S1) followed by a brief tone burst (S2) with the latter serving as the evoking signal. The duration and depth of the silent gap between S1 and S2 were manipulated, and the peak latency and amplitude of wave V were measured. The latency of the responses decreased significantly as the duration or depth of the gap increased. The amplitude of the responses was not affected by the duration or depth of the gap. These findings suggest that changing the physical parameters of the gap affects the auditory system’s ability to encode successive sounds.


Author(s):  
Suhani Sharma ◽  
Rajesh Tripathy ◽  
Udit Saxena

Speech in noise tests that measure the perception of speech in presence of noise are now an important part of audiologic tests battery and hearing research as well. There are various tests available to estimate the perception of speech in presence of noise, for example, connected sentence test, hearing in noise test, words in noise, quick speech-in-noise test, bamford-kowal-bench speech-in-noise test, and listening in spatialized noise-sentences. All these tests are different in terms of target age, measure, procedure, speech material, noise, normative, etc. Because of the variety of tests available to estimate speech-in-noise abilities, audiologists often select tests based on their availability, ease to administer the test, time required in running the test, age of the patient, hearing status, type of hearing disorder and type of amplification device if using. A critical appraisal of these speech-in-noise tests is required for the evidence based selection and to be used in audiology clinics. In this article speech-in-noise tests were critically appraised for their conceptual model, measurement model, normatives, reliability, validity, responsiveness, item/instrument bias, respondent burden and administrative burden. Selection of a standard speech-in-noise test based on this critical appraisal will also allow an easy comparison of speech-in-noise ability of any hearing impaired individual or group across audiology clinics and research centers. This article also describes the survey which was done to grade the speech in noise tests on the various appraisal characteristics.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Antonio Elia Forte ◽  
Octave Etard ◽  
Tobias Reichenbach

Humans excel at selectively listening to a target speaker in background noise such as competing voices. While the encoding of speech in the auditory cortex is modulated by selective attention, it remains debated whether such modulation occurs already in subcortical auditory structures. Investigating the contribution of the human brainstem to attention has, in particular, been hindered by the tiny amplitude of the brainstem response. Its measurement normally requires a large number of repetitions of the same short sound stimuli, which may lead to a loss of attention and to neural adaptation. Here we develop a mathematical method to measure the auditory brainstem response to running speech, an acoustic stimulus that does not repeat and that has a high ecological validity. We employ this method to assess the brainstem's activity when a subject listens to one of two competing speakers, and show that the brainstem response is consistently modulated by attention.


2019 ◽  
Vol 23 ◽  
pp. 233121651984829 ◽  
Author(s):  
Ghada BinKhamis ◽  
Antonio Elia Forte ◽  
Tobias Reichenbach ◽  
Martin O’Driscoll ◽  
Karolina Kluk

Evaluation of patients who are unable to provide behavioral responses on standard clinical measures is challenging due to the lack of standard objective (non-behavioral) clinical audiological measures that assess the outcome of an intervention (e.g., hearing aids). Brainstem responses to short consonant-vowel stimuli (speech-auditory brainstem responses [speech-ABRs]) have been proposed as a measure of subcortical encoding of speech, speech detection, and speech-in-noise performance in individuals with normal hearing. Here, we investigated the potential application of speech-ABRs as an objective clinical outcome measure of speech detection, speech-in-noise detection and recognition, and self-reported speech understanding in 98 adults with sensorineural hearing loss. We compared aided and unaided speech-ABRs, and speech-ABRs in quiet and in noise. In addition, we evaluated whether speech-ABR F0 encoding (obtained from the complex cross-correlation with the 40 ms [da] fundamental waveform) predicted aided behavioral speech recognition in noise or aided self-reported speech understanding. Results showed that (a) aided speech-ABRs had earlier peak latencies, larger peak amplitudes, and larger F0 encoding amplitudes compared to unaided speech-ABRs; (b) the addition of background noise resulted in later F0 encoding latencies but did not have an effect on peak latencies and amplitudes or on F0 encoding amplitudes; and (c) speech-ABRs were not a significant predictor of any of the behavioral or self-report measures. These results show that speech-ABR F0 encoding is not a good predictor of speech-in-noise recognition or self-reported speech understanding with hearing aids. However, our results suggest that speech-ABRs may have potential for clinical application as an objective measure of speech detection with hearing aids.


2019 ◽  
Vol 23 ◽  
pp. 233121651983961 ◽  
Author(s):  
John H. Grose ◽  
Emily Buss ◽  
Hollis Elmore

The purpose of this study was to determine whether cochlear synaptopathy can be shown to be a viable basis for age-related hearing difficulties in humans and whether it manifests as deficient suprathreshold processing of temporal and spectral modulation. Three experiments were undertaken evaluating the effects of age on (a) the auditory brainstem response as a function of level, (b) temporal modulation detection as a function of level and background noise, and (c) spectral modulation as a function of level. Across the three experiments, a total of 21 older listeners with near-normal audiograms and 29 young listeners with audiometrically normal hearing participated. The auditory brainstem response experiment demonstrated reduced Wave I amplitudes and concomitant reductions in the amplitude ratios of Wave I to Wave V in the older listener group. These findings were interpreted as consistent with an electrophysiological profile of cochlear synaptopathy. The temporal and spectral modulation detection experiments, however, provided no support for the hypothesis of compromised suprathreshold processing in these domains. This pattern of results suggests that even if cochlear synaptopathy can be shown to be a viable basis for age-related hearing difficulties, then temporal and spectral modulation detection paradigms are not sensitive to its presence.


2019 ◽  
Vol 382 ◽  
pp. 107795 ◽  
Author(s):  
Gavin M. Bidelman ◽  
Caitlin N. Price ◽  
Dawei Shen ◽  
Stephen R. Arnott ◽  
Claude Alain

Sign in / Sign up

Export Citation Format

Share Document