scholarly journals Taxonomy and systematics of Hyaloscyphaceae and Arachnopezizaceae

Author(s):  
T. Kosonen ◽  
S. Huhtinen ◽  
K. Hansen

The circumscription and composition of the Hyaloscyphaceae are controversial and based on poorly sampled or unsupported phylogenies. The generic limits within the hyaloscyphoid fungi are also very poorly understood. To address this issue, a robust five-gene Bayesian phylogeny (LSU, RPB1, RPB2, TEF-1α, mtSSU; 5521 bp) with a focus on the core group of Hyaloscyphaceae and Arachnopezizaceae is presented here, with comparative morphological and histochemical characters. A wide representative sampling of Hyaloscypha supports it as monophyletic and shows H. aureliella (subgenus Eupezizella) to be a strongly supported sister taxon. Reinforced by distinguishing morphological features, Eupezizella is here recognised as a separate genus, comprising E. aureliella, E. britannica, E. roseoguttata and E. nipponica (previously treated in Hyaloscypha). In a sister group to the Hyaloscypha-Eupezizella clade a new genus, Mimicoscypha, is created for three seldom collected and poorly understood species, M. lacrimiformis, M. mimica (nom. nov.) and M. paludosa, previously treated in Phialina, Hyalo­scypha and Eriopezia, respectively. The Arachnopezizaceae is polyphyletic, because Arachnoscypha forms a monophyletic group with Polydesmia pruinosa, distant to Arachnopeziza and Eriopezia; in addition, Arachnopeziza variepilosa represents an early diverging lineage in Hyaloscyphaceae s.str. The hyphae originating from the base of the apothecia in Arachnoscypha are considered anchoring hyphae (vs a subiculum) and Arachnoscypha is excluded from Arachnopezizaceae. A new genus, Resinoscypha, is established to accommodate Arachnopeziza variepilosa and A. monoseptata, originally described in Protounguicularia. Mimicoscypha and Resinoscypha are distinguished among hyaloscyphoid fungi by long tapering multiseptate hairs that are not dextrinoid or glassy, in combination with ectal excipulum cells with deep amyloid nodules. Unique to Resinoscypha is cyanophilous resinous content in the hairs concentrated at the apex and septa. Small intensely amyloid nodules in the hairs are furthermore characteristic for Resinoscypha and Eupezizella. To elucidate species limits and diversity in Arachnopeziza, mainly from Northern Europe, we applied genealogical concordance phylogenetic species recognition (GCPSR) using analyses of individual datasets (ITS, LSU, RPB1, RPB2, TEF-1α) and comparative morphology. Eight species were identified as highly supported and reciprocally monophyletic. Four of these are newly discovered species, with two formally described here, viz. A. estonica and A. ptilidiophila. In addition, Belonium sphagnisedum, which completely lacks prominent hairs, is here combined in Arachnopeziza, widening the concept of the genus. Numerous publicly available sequences named A. aurata represent A. delicatula and the confusion between these two species is clarified. An additional four singletons are considered to be distinct species, because they were genetically divergent from their sisters. A highly supported five-gene phylogeny of Arachnopezizaceae identified four major clades in Arachnopeziza, with Eriopezia as a sister group. Two of the clades include species with a strong connection to bryophytes; the third clade includes species growing on bulky woody substrates and with pigmented exudates on the hairs; and the fourth clade species with hyaline exudates growing on both bryophytes and hardwood. A morphological account is given of the composition of Hyaloscyphaceae and Arachnopezizaceae, including new observations on vital and histochemical characters.

2019 ◽  
Vol 42 (1) ◽  
pp. 186-204 ◽  
Author(s):  
K. Hansen ◽  
T. Schumacher ◽  
I. Skrede ◽  
S. Huhtinen ◽  
X.-H. Wang

The Helvellaceae encompasses taxa that produce some of the most elaborate apothecial forms, as well as hypogeous ascomata, in the class Pezizomycetes (Ascomycota). While the circumscription of the Helvellaceae is clarified, evolutionary relationships and generic limits within the family are debatable. A robust phylogeny of the Helvellaceae, using an increased number of molecular characters from the LSU rDNA, RPB2 and EF-1α gene regions (4 299 bp) and a wide representative sampling, is presented here. Helvella s.lat. was shown to be polyphyletic, because Helvella aestivalis formed a distant monophyletic group with hypogeous species of Balsamia and Barssia. All other species of Helvella formed a large group with the enigmatic Pindara (/Helvella) terrestris nested within it. The ear-shaped Wynnella constitutes an independent lineage and is recognised with the earlier name Midotis. The clade of the hypogeous Balsamia and Barssia, and H. aestivalis is coherent in the three-gene phylogeny, and considering the lack of phenotypic characters to distinguish Barssia from Balsamia we combine species of Barssia, along with H. aestivalis, in Balsamia. The closed/tuberiform, sparassoid H. astieri is shown to be a synonym of H. lactea; it is merely an incidental folded form of the saddle-shaped H. lactea. Pindara is a sister group to a restricted Helvella, i.e., excluding the /leucomelaena lineage, on a notably long branch. We recognise Pindara as a separate genus and erect a new genus Dissingia for the /leucomelaena lineage, viz. H. confusa, H. crassitunicata, H. leucomelaena and H. oblongispora. Dissingia is supported by asci that arise from simple septa; all other species of Helvellaceae have asci that arise from croziers, with one exception being the /alpina-corium lineage of Helvella s. str. This suggests ascus development from croziers is the ancestral state for the Helvellaceae and that ascus development from simple septa has evolved at least twice in the family. Our phylogeny does not determine the evolutionary relationships within Helvella s.str., but it is most parsimonious to infer that the ancestor of the helvelloids produced subsessile or shortly stipitate, cup-shaped apothecia. This shape has been maintained in some lineages of Helvella s.str. The type species of Underwoodia, Underwoodia columnaris, is a sister lineage to the rest of the Helvellaceae.


2020 ◽  
Vol 44 (1) ◽  
pp. 113-139
Author(s):  
L.H. Han ◽  
G. Wu ◽  
E. Horak ◽  
R.E. Halling ◽  
J. Xu ◽  
...  

Strobilomyces is broadly distributed geographically and serves an important ecological function. However, it has been difficult to delimit species within the genus, primarily due to developmental variations and phenotypic plasticity. To elucidate phylogenetic relationships among species within the genus and to understand its species diversity, especially in Asia, materials of the genus collected from five continents (Africa, Asia, Australia, Europe, and North/Central America) were investigated. The phylogeny of Strobilomyces was reconstructed based on nucleotide sequences of four genes coding for: the largest and the second largest subunits of the RNA polymerase II (RPB1 and RPB2); the translation elongation factor subunit 1-α (TEF1); and the mitochondrial cytochrome oxidase subunit 3 (COX3). The combined results based on molecular phylogenetics, morphological characters, host tree associations, and geographical distribution patterns support a new classification consisting of two sections, sect. Strobilomyces and sect. Echinati. Using the genealogical concordance phylogenetic species recognition (GCPSR) approach, at least 33 phylogenetic species in Asia can be delimited, all of which are supported by morphological features, and five phylogenetic species remain to be described. The mountainous region of Southwest China is especially special, containing at least 21 species and likely represents a centre of diversification. We further compared our specimens with the type specimens of 25 species of Strobilomyces. Our comparisons suggest that, there are a total of 31 distinct species, while S. sanmingensis, S. verruculosus, S. subnigricans, and S. zangii/S. areolatus, are synonyms of S. mirandus, S. giganteus, S. alpinus and S. seminudus, respectively. Eight new species, namely, S. albidus, S. anthracinus, S. calidus, S. cingulatus, S. densisquamosus, S. douformis, S. microreticulatus and S. pinophilus, are described. A dichotomous key to the Asian Strobilomyces species is provided.


2001 ◽  
Vol 49 (5) ◽  
pp. 561 ◽  
Author(s):  
Victor R. Townsend Jr ◽  
Bruce E. Felgenhauer ◽  
Judy F. Grimshaw

We examined the morphology of the genitalia and cuticular scales of eight species of Australian lynx spiders of the genus Oxyopes and compared them with those of representative species from Africa, Asia and North America. Our results indicate that the eight species examined are representative of two distinct species groups of Oxyopes in Australia. The first group consists ofO. amoenus, O. dingo, O. gracilipes, O. molarius, O. rubicundus, and O. variabilis. The evolutionary origin of these spiders is difficult to discern as they share multiple genitalic characters with African and Asian taxa. However, these six species display two characters, leg scales and internal cuticular elements in the opisthosomal scales, that are exhibited by African, but not Asian, taxa. The second group consists of Oxyopes macilentus and O. papuanis. These taxa exhibit many of the same morphological features, exhibited by Asian, but not African, species.


2012 ◽  
Vol 25 (6) ◽  
pp. 418 ◽  
Author(s):  
Roy E. Halling ◽  
Mitchell Nuhn ◽  
Todd Osmundson ◽  
Nigel Fechner ◽  
James M. Trappe ◽  
...  

Harrya is described as a new genus of Boletaceae to accommodate Boletus chromapes, a pink-capped bolete with a finely scabrous stipe adorned with pink scabers, a chrome yellow base and a reddish-brown spore deposit. Phylogenetic analyses of large-subunit rDNA and translation elongation factor 1α confirmed Harrya as a unique generic lineage with two species, one of which is newly described (H. atriceps). Some Chinese taxa were recently placed in a separate genus, Zangia, supported by both morphology and molecular data. Multiple accessions from Queensland, Australia, support the synonymy of at least three species in a separate Australian clade in the new genus, Australopilus. The truffle-like Royoungia is also supported as a separate lineage in this clade of boletes. Even though it lacks stipe characters, it possesses the deep, bright yellow to orange pigments in the peridium. Additional collections from Zambia and Thailand represent independent lineages of uncertain phylogenetic placement in the Chromapes complex, but sampling is insufficient for formal description of new species. Specimens from Java referable to Tylopilus pernanus appear to be a sister group of the Harrya lineage.


Zootaxa ◽  
2018 ◽  
Vol 4524 (1) ◽  
pp. 77 ◽  
Author(s):  
KEIJI BABA ◽  
SHANE T. AHYONG ◽  
KAREEN E. SCHNABEL

The chirostyloidean squat lobster genus Gastroptychus Caullery, 1896 is revised and is split into two genera: Gastroptychus sensu stricto (type species, Ptychogaster spinifer A. Milne-Edwards, 1880) and Sternostylus new genus (type species, Ptychogaster formosus Filhol, 1884). Gastroptychus sensu stricto, is restricted to nine species with a sternal plastron, at sternite 3, abruptly demarcated from the preceding sternites (excavated sternum) by a distinct step forming a well-defined transverse or concave anterior margin at the articulation with maxillipeds 3, the maxillipeds 3 widely separated, with the distal parts accommodated in the excavated sternum between the left and right maxillipeds 3 when folded, and the P2–4 dactyli with the terminal spine demarcated by a suture. Sternostylus new genus, represented by 12 species, has the sternite 3 anteriorly bluntly produced medially and steeply sloping anterodorsally to the anterior sternite, with a pair of spines directly behind the anterior margin, the left and right maxillipeds 3 adjacent, and the P2–4 dactyli ending in an indistinctly demarcated corneous spine. The above-mentioned characters of Gastroptychus are consistent with Chirostylidae sensu stricto. Published molecular phylogenies indicate, however, that Sternostylus is the sister group to all the other Chirostylidae, and is designated the type genus of a new family, Sternostylidae. 


1985 ◽  
Vol 16 (1) ◽  
pp. 27-67 ◽  
Author(s):  
Henrik Enghoff

AbstractThe family Nemasomatidae is redefined to include onty genera with all sterna secondarily free from pleurotergites. Comments are given on the included genera, viz., Antrokoreana, Basoncopus gen. n. (type-species B. filiformis sp. n.) (Kazakhstan), Dasynemasoma, Thalassisobates, Sinostemmiulus, Nemasoma, and Orinisobates. Isobates coiffaiti Demange, 1961 is synonymized with Thalassisobates littoralis (Silvestri, 1903). Orinisobates is revised and shown to include O. soror sp. n. (Kuril Islands), O. microthylax sp. n. (Kamchatka and Siberia), O. gracilis (Verhoeff, 1933) (NW China), O. sibiricus (Gulicka, 1963) (Altai region, Kazakhstan), O. kasakstanus (Lohmander, 1933) (Kazahkstan), O. nigrior (Chamberlin, 1943) (eastern United States), O. utus (Chamberlin, 1912) (northwestern United States), and O. expressus (Chamberlin, 1941) (northwestern United States and adjacent Canada). Mimolene oregona Chambertin, 1941 and M. sectile Loomis & Schmitt, 1971 are synonymized with O. expressus. A possible case of parthenogenesis in O. microthylax is recorded. Evidence is presented for the following sister-group relationships: Antrokoreana + (Basoncopus + (Dasynemasoma + (Thalassisobates + (Sinostemmiulus + (Orinisobates + Nemasoma))))). The position of Basoncopus is uncertain, and O. soror may belong in a separate genus and constitute the sister-group of Orinisohates + Nemasoma. If soror does belong in Orinisobates, it is the sister-group of all its congeners. The American species of Orinisobates are shown probably to constitute a monophyietic group. The family is suggested to have originated in the eastern Palearctic region, Orinisobates having invaded North America via the Bering Bridge. Doubtful species and species erroneously assoiciated with the Nemasomatidae are listed. The genera Okeanobates and Yosidaiulus are excluded from the family and referred to Okeanobatidae stat. n. in superfamily Blaniuloidea. The genera Trichonemasoma, Telsonemasoma, and Chelojulus are also excluded from the Nemasomatidae and relegated to Julida incertae sedis.


Phytotaxa ◽  
2018 ◽  
Vol 336 (1) ◽  
pp. 43 ◽  
Author(s):  
MILAN C. SAMARAKOON ◽  
YUSUFJON GAFFOROV ◽  
NINGGUO LIU ◽  
SAJEEWA S. N. MAHARACHCHIKUMBURA ◽  
JAYARAMA D. BHAT ◽  
...  

The genus Coniochaeta is an important ascomycete because its members live in diversified habitats and nutritional modes. In this study, two new species, C. acaciae and C. coluteae, are introduced from dead branches of Acacia sp. and Colutea paulsenii Freyn (both Fabaceae) respectively from Uzbekistan, based on morphological and phylogenetic studies. Analyses of combined ITS and LSU sequence data with Genealogical Concordance Phylogenetic Species Recognition (GCPSR) and comparison of similar taxa, provide evidences for placement of these new species in Coniochaeta, as distinct lineages.


Zootaxa ◽  
2017 ◽  
Vol 4254 (5) ◽  
pp. 537 ◽  
Author(s):  
CHIA-HSUAN WEI ◽  
SHEN-HORN YEN

The Epicopeiidae is a small geometroid family distributed in the East Palaearctic and Oriental regions. It exhibits high morphological diversity in body size and wing shape, while their wing patterns involve in various complex mimicry rings. In the present study, we attempted to describe a new genus, and a new species from Vietnam, with comments on two assumed congeneric novel species from China and India. To address its phylogenetic affinity, we reconstructed the phylogeny of the family by using sequence data of COI, EF-1α, and 28S gene regions obtained from seven genera of Epicopeiidae with Pseudobiston pinratanai as the outgroup. We also compared the morphology of the new taxon to other epicopeiid genera to affirm its taxonomic status. The results suggest that the undescribed taxon deserve a new genus, namely Mimaporia gen. n. The species from Vietnam, Mimaporia hmong sp. n., is described as new to science. Under different tree building strategies, the new genus is the sister group of either Chatamla Moore, 1881 or Parabraxas Leech, 1897. The morphological evidence, which was not included in phylogenetic analyses, however, suggests its potential affinity with Burmeia Minet, 2003. This study also provides the first, although preliminary, molecular phylogeny of the family on which the revised systematics and interpretation of character evolution can be based. 


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7853 ◽  
Author(s):  
Yuchen Yan ◽  
Gengyun Niu ◽  
Yaoyao Zhang ◽  
Qianying Ren ◽  
Shiyu Du ◽  
...  

Labriocimbex sinicus Yan & Wei gen. et sp. nov. of Cimbicidae is described. The new genus is similar to Praia Andre and Trichiosoma Leach. A key to extant Holarctic genera of Cimbicinae is provided. To identify the phylogenetic placement of Cimbicidae, the mitochondrial genome of L. sinicus was annotated and characterized using high-throughput sequencing data. The complete mitochondrial genome of L. sinicus was obtained with a length of 15,405 bp (GenBank: MH136623; SRA: SRR8270383) and a typical set of 37 genes (22 tRNAs, 13 PCGs, and two rRNAs). The results demonstrated that all PCGs were initiated by ATN codon, and ended with TAA or T stop codons. The study reveals that all tRNA genes have a typical clover-leaf secondary structure, except for trnS1. Remarkably, the secondary structures of the rrnS and rrnL of L. sinicus were much different from those of Corynis lateralis. Phylogenetic analyses verified the monophyly and positions of the three Cimbicidae species within the superfamily Tenthredinoidea and demonstrated a relationship as (Tenthredinidae + Cimbicidae) + (Argidae + Pergidae) with strong nodal supports. Furthermore, we found that the generic relationships of Cimbicidae revealed by the phylogenetic analyses based on COI genes agree quite closely with the systematic arrangement of the genera based on the morphological characters. Phylogenetic tree based on two methods shows that L. sinicus is the sister group of Praia with high support values. We suggest that Labriocimbex belongs to the tribe Trichiosomini of Cimbicinae based on adult morphology and molecular data. Besides, we suggest to promote the subgenus Asitrichiosoma to be a valid genus.


2021 ◽  
pp. 1-5 ◽  
Author(s):  
James C. Lamsdell

One of the oldest fossil horseshoe crabs figured in the literature is Entomolithus lunatus Martin, 1809, a Carboniferous species included in his Petrificata Derbiensia. While the species has generally been included within the genus Belinurus Bronn, 1839, it was recently used as the type species of the new genus Parabelinurus Lamsdell, 2020. However, recent investigation as to the appropriate authority for Belinurus (see Lamsdell and Clapham, 2021) revealed that all the names in Petrificata Derbiensia were suppressed in Opinion 231 of the International Commission on Zoological Nomenclature (1954) for being consistently nonbinomial under Article 11.4 of the International Code of Zoological Nomenclature (ICZN) (International Commission on Zoological Nomenclature, 1999). Despite the validation of several species names for anthozoans, brachiopods, and cephalopods described in Petrificata Derbiensia in subsequent rulings (International Commission on Zoological Nomenclature, 1956a, b), Belinurus lunatus has not been the subject of any subsequent Commission ruling or opinion, and so its use in Petrificata Derbiensia remains suppressed. The Belinurus lunatus species name was used in several subsequent publications during the 1800s, none of which made the name available under ICZN article 11.5; Parkinson (1811) is also suppressed for being nonbinomial, while Woodward (1830), Buckland (1837), Bronn (1839), and Baily (1859) refer to the species only as a synonym of Belinurus trilobitoides (Buckland, 1837) through citation to the suppressed Pretificata Derbiensia. The first author to make Belinurus lunatus an available name was Baldwin (1905), who used the name in reference to a new figured specimen from Sparth Bottoms, Rochdale, UK, but again as an explicit junior synonym of Belinurus trilobitoides (Buckland, 1837). Therefore, it was not until Eller (1938) treated B. lunatus as a distinct species from B. trilobitoides that B. lunatus became an available name as per ICZN Article 11.6.1 under the authorship of Baldwin (1905) following ICZN Article 50.7.


Sign in / Sign up

Export Citation Format

Share Document