scholarly journals A re-evaluation of Penicillium section Canescentia, including the description of five new species

Author(s):  
C.M. Visagie ◽  
J.C. Frisvad ◽  
J. Houbraken ◽  
A. Visagie ◽  
R.A. Samson ◽  
...  

A survey of Penicillium in the fynbos biome from South Africa resulted in the isolation of 61 species of which 29 were found to be new. In this study we focus on Penicillium section Canescentia, providing a phylogenetic re-evaluation based on the analysis of partial beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequence data. Based on phylogenies we show that five fynbos species are new and several previously assigned synonyms of P. canescens and P. janczewskii should be considered as distinct species. As such, we provide descriptions for the five new species and introduce the new name P. elizabethiae for the illegitimate P. echinatum. We also update the accepted species list and synonymies of section Canescentia species and provide a review of extrolites produced by these species.

2021 ◽  
Vol 7 (2) ◽  
pp. 126
Author(s):  
Ernesto Rodríguez-Andrade ◽  
Alberto M. Stchigel ◽  
José F. Cano-Lira

Soil is one of the main reservoirs of fungi. The aim of this study was to study the richness of ascomycetes in a set of soil samples from Mexico and Spain. Fungi were isolated after 2% w/v phenol treatment of samples. In that way, several strains of the genus Penicillium were recovered. A phylogenetic analysis based on internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II subunit 2 gene (rpb2) sequences showed that four of these strains had not been described before. Penicillium melanosporum produces monoverticillate conidiophores and brownish conidia covered by an ornate brown sheath. Penicillium michoacanense and Penicillium siccitolerans produce sclerotia, and their asexual morph is similar to species in the section Aspergilloides (despite all of them pertaining to section Lanata-Divaricata). P. michoacanense differs from P. siccitolerans in having thick-walled peridial cells (thin-walled in P. siccitolerans). Penicillium sexuale differs from Penicillium cryptum in the section Crypta because it does not produce an asexual morph. Its ascostromata have a peridium composed of thick-walled polygonal cells, and its ascospores are broadly lenticular with two equatorial ridges widely separated by a furrow. All four new species are xerophilic. Despite the genus Penicillium containing more than 480 known species, they are rarely reported as xerophilic.


2004 ◽  
Vol 18 (3) ◽  
pp. 235 ◽  
Author(s):  
Gregory D. Edgecombe ◽  
Gonzalo Giribet

Species assigned to the anopsobiine centipede genera Anopsobius Silvestri, 1899, and Dichelobius Attems, 1911, are widely distributed on fragments of the Gondwanan supercontinent, including temperate and tropical Australia, New Zealand, New Caledonia, the Cape region of South Africa, and southern South America. Phylogenetic relationships between Australasian and other Gondwanan Anopsobiinae are inferred based on parsimony and maximum likelihood analyses (via direct optimisation) of sequence data for five markers: nuclear ribosomal 18S rRNA and 28S rRNA, mitochondrial ribosomal 12S rRNA and 16S RNA, and the mitochondrial protein-coding cytochrome c oxidase subunit I. New molecular data are added for Anopsobius from South Africa and New Zealand, Dichelobius from New Caledonia, and a new species from Queensland, Australia, Dichelobius etnaensis, sp. nov. The new species is based on distinctive morphological and molecular data. The molecular phylogenies indicate that antennal segmentation in the Anopsobiinae is a more reliable taxonomic character than is spiracle distribution. The former character divides the Gondwanan clade into a 17-segmented group (Dichelobius) and a 15-segmented group (Anopsobius). Confinement of the spiracles to segments 3, 10 and 12 has at least two origins in the Gondwanan clade. The area cladogram for Dichelobius (Queensland (Western Australia + New Caledonia)) suggests a relictual distribution pruned by extinction.


2012 ◽  
Vol 88 (2) ◽  
pp. 139-151 ◽  
Author(s):  
A.P. Malan ◽  
R. Knoetze ◽  
L. Tiedt

AbstractA new entomopathogenic nematode in the genus Heterorhabditis is described from South Africa, from two singular isolates found 1000 km from each other, from beneath a fig tree and in a citrus orchard, respectively. Morphological and molecular studies indicate both isolates to be the same and a new undescribed Heterorhabditis species. Comparison of sequences of the internal transcribed spacer (ITS) rDNA and the D2D3 region of the 28S rDNA gene with available sequences of other described species within the genus, indicate the two isolates as a new species. Phylogenetic analysis of the sequence data concerned placed the new species, H. noenieputensis n. sp., closest to H. indica and H. gerrardi in the indica-group. The new species, H. noenieputensis n. sp., is distinguished from other species in the genus by a combination of several morphological traits of the males and the infective juveniles (IJs). The new species differs from all other species previously described, as regards the body length of the IJs, except for H. indica and H. taysearae, in which the IJ is smaller. The IJ also differs from that of H. indica in the length of the oesophagus, the body diameter, the length of the tail and the E%. In addition, males of H. noenieputensis n. sp. differ from their closest relative, H. indica, in the position of the excretory pore, SW% and D%; and from H. gerrardi in the length of the oesophagus and SW%. The seventh pair of genital papillae of H. noenieputensis n. sp. are normally developed, while for H. indica they are often branched or swollen at the base, while 8 and 9 are usually absent in both species.


Phytotaxa ◽  
2014 ◽  
Vol 186 (1) ◽  
pp. 51 ◽  
Author(s):  
Qiu-Xiang Chen ◽  
Gui-Zhen Chen ◽  
Ming-He Li ◽  
Shi-Pin Chen

In this study, we describe a new orchid species, Goodyera malipoensis, from Yunnan, China. We have performed morphological and molecular analyses on this new species. A detailed comparison between the newly discovered orchid and other members of Goodyera was conducted. The new plant is characterized by having a dense brownish green pubescence on the peduncle. Its ovate-lanceolate petal is unique in Goodyera genus. The hypochile is deeply concave-saccate, and inside there are two papillose rows on each side. These features distinguish the new orchid from all other known species of Goodyera. The molecular study based on nuclear ribosomal ITS sequence data and morphological differences support G. malipoensis as a distinct species.


Phytotaxa ◽  
2017 ◽  
Vol 309 (1) ◽  
pp. 35
Author(s):  
RENATO MELLO-SILVA

Vellozia leptopetala corresponds to V. epidendroides, a much older name, and its taxonomic history encompass also V. epidendroides var. divaricata and V. epidendroides var. major, which are quite distinct species. For solving this situation, new synonyms of V. epidendroides, a new name, V. ornithophila, and a new status for both varieties of V. epidendroides are here presented. Vellozia virgata corresponds to V. sellowii, also a much older name. For solving this situation, the sinking of V. virgata into V. sellowii, and a new species, V. linearis, based on the isotypes of V. virgata, are presented. Vellozia asperula var. filifolia showed to be a very distinct species from V. asperula. For mending this situation, a new status for V. asperula var. filifolia is proposed.


Phytotaxa ◽  
2019 ◽  
Vol 419 (1) ◽  
pp. 28-38 ◽  
Author(s):  
KE-KE ZHANG ◽  
SINANG HONGSANAN ◽  
DANUSHKA S. TENNAKOON ◽  
SHENG-LI TIAN ◽  
NING XIE

Phaeosphaeria chinensis sp. nov. was found on dead leaves, collected from Guangdong Province, China. Morphology of the new species was compared with other Phaeosphaeria species and related genera of Phaeosphaeriaceae. Phylogenetic analyses of combined ITS, LSU, SSU and TEF-1 sequence data based on maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) revealed that P. chinensis as a distinct species within the Phaeosphaeria with high bootstrap support. The comparison of the new species with other Phaeosphaeria species and a comprehensive description and micrographs are provided. The linkage of sexual and asexual morphs of the new species is also showed.


Phytotaxa ◽  
2020 ◽  
Vol 446 (2) ◽  
pp. 95-102
Author(s):  
YONG-ZHONG LU ◽  
JING-YI ZHANG ◽  
CHUAN-GEN LIN ◽  
ZONG-LONG LUO ◽  
JIAN-KUI (JACK) LIU

Pseudodactylaria fusiformis sp. nov. was collected during an investigation of freshwater fungi along a north-south latitudinal gradient in the Asian region. Evidence for the new species is provided by morphological comparison and sequence data analysis. Pseudodactylaria fusiformis differs from other species in having hyaline conidiophores and fusiform, 0–1-septate hyaline conidia without a sheath. Phylogenetic analysis based on combined ITS and LSU sequence data was carried out to determine the phylogenetic placement of the species. Six Pseudodactylaria taxa clustered together and formed a monotypic clade representing the genus, and five species are well recognized. Pseudodactylaria fusiformis and P. camporesiana share a sister relationship and they are phylogenetically distinct species. A detailed description and illustration are provided, as well as the comparisons with similar taxa.


Phytotaxa ◽  
2020 ◽  
Vol 459 (2) ◽  
pp. 139-154
Author(s):  
CORNELIA KLAK ◽  
PAVEL HANÁČEK ◽  
ODETTE CURTIS-SCOTT ◽  
ANSO LE ROUX ◽  
PETER V. BRUYNS

A phylogeny of all nine subgenera of Drosanthemum, based on chloroplast sequence-data, is presented. The results confirm some previously published facts, e.g. that D. zygophylloides is sister to Drosanthemum. We propose to treat this species as a new monotypic genus, Lemonanthemum, which differs from Drosanthemum in features of the leaves and fruit-stalks. In Drosanthemum s.s., the small subg. Quadrata, characterized by 4-locular fruits, is highly supported as sister to the remainder of Drosanthemum (where fruits are 5-locular). Further, our data support the transfer of Delosperma pubipetalum to Drosanthemum (where a nomenclatural change is also made). The pubescent petals, 5-locular fruits with narrow covering membranes and downward-pointing hair-like papillae on the branches suggest that D. pubipetalum is close to D. papillatum and belongs to subg. Quastea. Another species, D. badspoortense, which had been placed in D. subg. Quastea on account of its narrow covering membranes, is shown to belong to Delosperma and also lacks the unique structure of the fruit-stalk of Drosanthemum. In addition, a new species, D. overbergense, is described from disjunct patches of remnant renosterveld within the Overberg and near Albertinia, in the Western Cape of South Africa. Morphological characteristics suggest that this species belongs to subg. Xamera, but this was not corroborated by our molecular data. Finally, a new name—Drosanthemum calcareum—is proposed for the illegitimate D. intermedium and a lectotype (at BOL) is designated for D. pubipetalum. The lectotypification of D. badspoortense is also proposed.


2021 ◽  
Vol 7 (11) ◽  
pp. 982
Author(s):  
Shi-Liang Liu ◽  
Shuang-Hui He ◽  
Dong-Mei Liu ◽  
Li-Wei Zhou

Fibrodontia is a genus of wood-inhabiting fungi consisting of four species so far, including F. gossypina as generic type. Two new species, Fibrodontia austrosinensis and F. subalba, are described and illustrated from China. Fibrodontia austrosinensis from southwestern China is characterized by a grandinioid to odontioid hymenophore with numerous small aculei, a dimitic hyphal system with scattered, smooth skeletal hyphae and ellipsoid basidiospores measuring 4.2–5.2 × 3.5–4.5 μm. Fibrodontia subalba from the West Tianshan Mountain in northwestern China is distinguished by an odontioid to hydnoid hymenophore, a dimitic hyphal system, and ellipsoid basidiospores measuring 3.7–4.4 × 2.8–3.4 μm. The phylogenies inferred from the data set of nuc rDNA ITS1-5.8S-ITS2 (ITS) and D1–D2 domains of nuc 28S rDNA (28S), and that of ITS, 28S, translation elongation factor (tef1α), and RNA polymerase II second largest subunit (rpb2) supported Fibrodontia as a monophyletic genus in the Trechisporales, and F. austrosinensis and F. subalba as separate lineages within Fibrodontia. Multi-rate Poisson Tree Processes, Automatic Barcode Gap Discovery and genetic distance methods based on ITS sequences of Fibrodontia also supported F. austrosinensis and F. subalba as distinct species. The taxonomic status of F. fimbriata that was recently transferred from Cystidiodendron, is briefly discussed. A key to all six known species of Fibrodontia is provided.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shun Liu ◽  
Mei-Ling Han ◽  
Tai-Min Xu ◽  
Yan Wang ◽  
Dong-Mei Wu ◽  
...  

Fomitopsis pinicola is a common brown-rot fungal species found in northern hemisphere. It grows on many different gymnosperm and angiosperm trees. Recent studies show that it is a species complex; three species from North America and one species from Europe have been recognized in this complex. In the current study, six new species in the Fomitopsis pinicola complex were discovered from East Asia, based on morphological characters and phylogenetic analyses inferred from the sequence data of the internal transcribed spacer (ITS) regions, the second subunit of RNA polymerase II (RPB2), and the translation elongation factor 1-α gene (TEF). Detailed descriptions of the six new species are provided. Our results also indicates that species of the F. pinicola complex from East Asia usually have limited distribution areas and host specialization.


Sign in / Sign up

Export Citation Format

Share Document