scholarly journals Cristina Montana Pușcaș, Iosif Vasile Ferencz, Ciprian Cosmin Stremțan, Tudor Tămaș, Adrian Căsălean, The amazing architecture of the Dacians. Few thoughts concerning the use of mortars based on new analyses

2019 ◽  
Vol 7 (2) ◽  
pp. 53-67

In 2016, while carrying out a campaign on a Dacian “tower-house” type structure identified in earlier years on the Cetățuie Hill in Ardeu, an atypical material was noticed on the inferior surface of a stone block sitting perpendic¬ular on the revetment. Its appearance, of different colour and texture compared to the stone block it was attached to, led us to immediately assume it could be mortar. Based on this working hypothesis a series of questions were formulat¬ed, with the purpose of extracting as much valuable information as possible from the sample. Powder X-ray diffraction and petrographic investigations were carried out in order to answer these questions.

2011 ◽  
Vol 66 (7) ◽  
pp. 671-676 ◽  
Author(s):  
Trinath Mishra ◽  
Rainer Pöttgen

The equiatomic rare earth compounds REPtZn (RE = Y, Pr, Nd, Gd-Tm) were synthesized from the elements in sealed tantalum tubes by high-frequency melting at 1500 K followed by annealing at 1120 K and quenching. The samples were characterized by powder X-ray diffraction. The structures of four crystals were refined from single-crystal diffractometer data: TiNiSi type, Pnma, a = 707.1(1), b = 430.0(1), c = 812.4(1) pm, wR2 = 0.066, 602 F2, 21 variables for PrPt1.056Zn0.944; a = 695.2(1), b = 419.9(1), c = 804.8(1) pm, wR2 = 0.041, 522 F2, 21 variables for GdPt0.941Zn1.059; a = 688.2(1), b = 408.1(1), c = 812.5(1) pm, wR2 = 0.041, 497 F2, 22 variables for HoPt1.055Zn0.945; a = 686.9(1), b = 407.8(1), c = 810.4(1) pm, wR2 = 0.061, 779 F2, 20 variables for ErPtZn. The single-crystal data indicate small homogeneity ranges REPt1±xZn1±x. The platinum and zinc atoms build up three-dimensional [PtZn] networks (265 - 269 pm Pt-Zn in ErPtZn) in which the erbium atoms fill cages with coordination number 16 (6 Pt + 6 Zn + 4 Er). Bonding of the erbium atoms to the [PtZn] network proceeds via shorter RE-Pt distances, i. e. 288 - 293 pm in ErPtZn.


2020 ◽  
Vol 86 (5) ◽  
pp. 3-12
Author(s):  
Bohdana Belan ◽  
Mykola Manyako ◽  
Mariya Dzevenko ◽  
Dorota Kowalska ◽  
Roman Gladyshevskii

The new ternary silicide Lu3Ni11.74(2)Si4 was synthesized from the elements by arc-melting and its crystal structure was determined by the single-crystal X-ray diffraction. The compound crystallizes in the Sc3Ni11Ge4-type: Pearson symbol hP37.2, space group P63/mmc (No. 194), a = 8.0985(16), c = 8.550(2) Å, Z = 2; R = 0.0244, wR = 0.0430 for 244 reflections. The silicide Lu3Ni11.74(2)Si4 is new member of the EuMg5.2-type structure family.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Myroslava Horiacha ◽  
Galyna Nychyporuk ◽  
Rainer Pöttgen ◽  
Vasyl Zaremba

Abstract Phase formation in the solid solution TbNiIn1−x Ga x at 873 K was investigated in the full concentration range by means of powder X-ray diffraction and EDX analysis. The samples were synthesized by arc-melting of the pure metals with subsequent annealing at 873 K for one month. The influence of the substitution of indium by gallium on the type of structure and solubility was studied. The solubility ranges have been determined and changes of the unit cell parameters were calculated on the basis of powder X-ray diffraction data: TbNiIn1–0.4Ga0–0.6 (ZrNiAl-type structure, space group P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74461(8)–0.72711(17) and c = 0.37976(5)–0.37469(8) nm); TbNiIn0.2–0Ga0.8–1.0 (TiNiSi-type structure, space group Pnma, а = 0.68950(11)–0.68830(12), b = 0.43053(9)–0.42974(6), с = 0.74186(10)–0.73486(13) nm). The crystal structures of TbNiGa (TiNiSi type, Pnma, a = 0.69140(5), b = 0.43047(7), c = 0.73553(8) nm, wR2=0.0414, 525 F 2 values, 21 variables), TbNiIn0.83(1)Ga0.17(1) (ZrNiAl type, P 6 ‾ 2 m $P‾{6}2m$ , a = 0.74043(6), c = 0.37789(3) nm, wR2 = 0.0293, 322 F 2 values, 16 variables) and TbNiIn0.12(2)Ga0.88(2) (TiNiSi type, Pnma, a = 0.69124(6), b = 0.43134(9), c = 0.74232(11) nm, wR2 = 0.0495, 516 F 2 values, 21 variables) have been determined. The characteristics of the solid solutions and the variations of the unit cell parameters are briefly discussed.


2008 ◽  
Vol 63 (5) ◽  
pp. 507-512 ◽  
Author(s):  
Henning W. Rohm ◽  
Martin Köckerling

Rb[(Zr6C)Cl15] was prepared by heating ZrCl4, Zr powder, RbCl and Al4C3 at 850 °C for 21 days. The crystal structure was determined by single crystal X-ray diffraction (space group Pmma, a = 18.484(3), b = 18.962(2), c = 9.708(1) Å, V = 2505.4(6) Å3, and Z = 4). Rb[(Zr6C)Cl15] crystallises in the Cs[Nb6Cl15]-type structure. It is built up from two interconnected types of cluster chains, one with linear Zr−Cla−a-Zr bridges, the other one with bent bridges. The rubidium cations are spread over three different sites within the cluster network which differs significantly from the cation distribution in the comparable potassium and caesium phases. The cation distribution can be rationalised considering the size of the cavities and the Coulombic interactions.


1992 ◽  
Vol 7 (8) ◽  
pp. 2219-2224 ◽  
Author(s):  
N.E. Pingitore ◽  
B.F. Ponce ◽  
M.P. Eastman ◽  
F. Moreno ◽  
C. Podpora

Optical, electron microprobe, and x-ray diffraction analysis of 88 samples of various compositions between Ag2S and Ag2Se synthesized at high temperature in sealed quartz tubing indicates the presence of two solid-solution series in this system at ambient (room) conditions. One series extends from Ag2S to approximately Ag2S0.4Se0.7 and has the Ag2S-III-type structure (monoclinic). The second series ranges from Ag2S0.3Se0.7 to Ag2Se and is characterized by the Ag2Se-II-type structure (orthorhombic). Members of both series, in appropriate proportions, characterize the apparent compositional gap between the two solid solutions. Gradual shifts in the locations of the x-ray diffraction peaks along the compositional gradient of each solid solution revealed an expansion of the d-spacing as the larger Se ion was substituted for S in the Ag2S-III-type structure and a contraction as S was substituted for Se in the Ag2Se-II-type structure. The reported discrete phase, Ag4SSe (aguilarite, orthorhombic), appears to be simply a member of the monoclinic Ag2S-III-type solid solution.


2013 ◽  
Vol 790 ◽  
pp. 21-24
Author(s):  
Yun Yi Wu ◽  
Jian Gao ◽  
Tao Li ◽  
Zhi Qiang Hua

PbO-type structure β-FeSe superconductor ceramic were successfully prepared by solid state sinter method in high vacuum state. The structures of the ceramics were investigated by X-ray diffraction and scanning electron microscopy. X-ray diffraction indicates that the sample prepared by two-steps method exhibited a much improved crystallinity. And as sintering temperature increases to 700°C, secondary phase Fe7Se8 phase peak disappear and α-Fe peak weakened. Besides, the ceramic prepared in 700°C exhibited a denser surface morphology in comparison to that prepared in 410°C and its composition is closer to the chemical formula FeSe according to EDX compositional analyses. It was noted that the resistivity of the sample, sintered at 700°C using two-steps sinter method, shows a linear metallic behavior from room temperature and onset is around T = 7.5 K.


2012 ◽  
Vol 67 (11) ◽  
pp. 1225-1228 ◽  
Author(s):  
Michael Johnscher ◽  
Rainer Pöttgen

The YNi9In2-type copper-rich compounds RECu9Cd2 (RE=La, Ce, Pr, Nd) were synthesized directly from the elements in sealed niobium ampoules in an induction furnace and were characterized by powder X-ray diffraction. The structure of PrCu9Cd2 was refined from single-crystal Xray diffractometer data: P4/mbm, a=849.0(3), c=498.2(3) pm, wR2=0.0418, 374 F2 values, 23 variables. The structure has two striking polyhedral motifs: Pr@Cu16Cd4 and Cu2@Cu8Cd4. The packing of these polyhedra describes the whole structure. The copper and cadmium atoms build up a three-dimensional [Cu9Cd2] network with broader ranges of Cu-Cu (246 - 274 pm) and Cu-Cd (272 - 288 pm) distances. The cadmium atoms show segregation through pair formation with Cd-Cd distances of 288 pm.


2012 ◽  
Vol 189 ◽  
pp. 152-156
Author(s):  
H.Y. Yin ◽  
X. Liu ◽  
R. Wang ◽  
Jin Jun Liu ◽  
R.R. Lin ◽  
...  

Mechanical alloying (MA) and subsequent solid sintering process was used to prepare the Pr-containing pseudobinary Tb0.7Pr0.3Fe1.80alloys. The structural and magnetoelastic properties were in comparative investigated by means of x-ray diffraction and a standard strain technique for sinter and composite samples. The high Pr-content (Tb,Pr)Fe2Laves phase with MgCu2-type structure for the composition Tb0.7Pr0.3Fe1.80 were synthesized by MA plus annealing at 500 °C.


2017 ◽  
Vol 72 (7) ◽  
pp. 511-515 ◽  
Author(s):  
Sebastian Stein ◽  
Lukas Heletta ◽  
Rainer Pöttgen

AbstractGdCuMg has been synthesized by induction-melting of the elements in a sealed niobium ampoule followed by annealing in a muffle furnace. The sample was studied by powder and single crystal X-ray diffraction: ZrNiAl type, P6̅2m (a=749.2(4), c=403.3(1) pm), wR2=0.0242, 315 F2 values and 15 variables. Temperature dependent magnetic susceptibility measurements have revealed an experimental magnetic moment of 8.54(1) μB per Gd atom. GdCuMg orders ferromagnetically below TC=82.2(5) K and based on the magnetization isotherms it can be classified as a soft ferromagnet.


1999 ◽  
Vol 14 (3) ◽  
pp. 231-233 ◽  
Author(s):  
Raj P. Singh ◽  
Michael J. Miller ◽  
Jeffrey N. Dann

(Na0.6H0.4)(Ta0.7Nb0.3)O3 was synthesized by heating a tantalum/niobium scale containing two sodium tantalate/niobate phases :Na14(Ta0.7Nb0.3)12O37·31H2O and NaH2Ta0.7Nb0.3O4. Powder X-ray diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 indicated it to be a cubic perovskite (ABO3/ReO3 type structure) with unit cell a0=3.894 Å. The compound is analogous to the mineral lueshite (NaNbO3), and to the high temperature forms of NaTaO3 and NaNbO3. Powder diffraction data for (Na0.6H0.4)(Ta0.7Nb0.3)O3 will be useful in the analysis of synthetic tantalum/niobium concentrates.


Sign in / Sign up

Export Citation Format

Share Document