scholarly journals Comparative Analysis of Fuel Economy of B30 and B20 Fuels in Passenger Vehicles

2021 ◽  
Vol 100 (10) ◽  
pp. 230-235
Author(s):  
Maharani Dewi SOLIKHAH ◽  
Feri KARUANA ◽  
Andrias Rahman WIMADA ◽  
Khairil AMRI ◽  
Bina Restituta BARUS ◽  
...  
2018 ◽  
Vol 16 (6) ◽  
pp. 869-888 ◽  
Author(s):  
Siddharth Kulkarni ◽  
David John Edwards ◽  
Erika Anneli Parn ◽  
Craig Chapman ◽  
Clinton Ohis Aigbavboa ◽  
...  

Purpose Vehicle weight reduction represents a viable means of meeting tougher regulatory requirements designed to reduce fuel consumption and control greenhouse gas emissions. This paper aims to present an empirical and comparative analysis of lightweight magnesium materials used to replace conventional steel in passenger vehicles with internal combustion engines. The very low density of magnesium makes it a viable material for lightweighting given that it is lighter than aluminium by one-third and steel by three-fourth. Design/methodology/approach A structural evaluation case study of the “open access” Wikispeed car was undertaken. This included an assessment of material design characteristics such as bending stiffness, torsional stiffness and crashworthiness to evaluate whether magnesium provides a better alternative to the current usage of aluminium in the automotive industry. Findings The Wikispeed car had an issue with the rocker beam width/thickness (b/t) ratio, indicating failure in yield instead of buckling. By changing the specified material, Aluminium Alloy 6061-T651 to Magnesium EN-MB10020, it was revealed that vehicle mass could be reduced by an estimated 110 kg, in turn improving the fuel economy by 10 per cent. This, however, would require mechanical performance compromise unless the current design is modified. Originality/value This is the first time that a comparative analysis of material substitution has been made on the Wikispeed car. The results of such work will assist in the lowering of harmful greenhouse gas emissions and simultaneously augment fuel economy.


2012 ◽  
Author(s):  
Jeffrey Wishart ◽  
Matthew Shirk ◽  
Tyler Gray ◽  
Nicholas Fengler

2019 ◽  
Vol 118 ◽  
pp. 04035
Author(s):  
Yanjie Jiang ◽  
Peilin Wu

The rapid increase of private passenger vehicles in China has brought about serious problems of CO2 and air pollutant emissions. It has important practical guiding significance to compare the effects of emission reduction policies. In this paper, the LEAP system is used as a tool with classifying the private passenger vehicles according to the heterogeneity of displacement and fuel economy. The different emission reduction policy scenarios are simulated with respective implementation time and characteristic parameters. It is found that the management target of fuel economy is difficult to be realized by existing policies. Even the most stringent emission standards are all implemented, it is also necessary to cooperate with green travel which is mainly about reducing vehicles’ annual travel distance. Although the annual increment of private passenger car is huge, however, there will be a certain downward trend in the discharge of air pollutants. On this basis, it is suggested that a policy goal of maintaining or lowering the emission level can be established. The research suggests that, on the supply side the government should continue to strengthen the management of fuel economy, improve the emission standards, boost the new energy vehicles vigorously, the energy saving vehicles under overall consideration and diesel cars carefully, while on the demand side the green travel should be encouraged at the same time.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3753 ◽  
Author(s):  
Zhang ◽  
Yang ◽  
Teng ◽  
Ouyang ◽  
Guo ◽  
...  

China and the US have become the world's largest plug-in hybrid electric vehicle (PHEV) markets. Powertrain architecture is the framework of PHEV technology which represents its technical route. The research on the market development and technical route of Chinese and American PHEV is helpful to grasp the internal law of the global PHEV market and technology situation, and thus is significant to lay out a development strategy and technical route but has not been sufficiently studied. Therefore, an evaluation method of three dimensions combining market sales, powertrain architectures and performance indexes was proposed for comparative analysis, and PHEV mainstream architectures were put forward. Besides, qualitative evaluation levels from nine dimensions were built for architecture analysis, and fuel consumption to curb weight (FC2CW) as an indicator was introduced for economy evaluation. Some conclusions can be drawn: (a) The most mainstream architecture in sales volume is four-wheel drive (4WD) Bridge, and that in models’ amount is P2 in China, while those respectively are PS and P2 in the US. This reflects that a difference exists between the choice of the consumers and that of the automakers, and another difference also exists between the two countries. (b) With the phasing down of subsidies, the single-motor parallel architecture may become the first choice of China's next technical route, while the 4WD Bridge will still be the main architecture for sports utility vehicles (SUVs) or sports car. (c) Among the models of the top five sales, the types and sales of SUVs in China are significantly more, however, the fuel economy rankings of theirs in the US are relatively better. (d) It is difficult to distinguish which architecture has the absolute best economy, but the fuel economy of the series type in the two markets is not very good.


Sign in / Sign up

Export Citation Format

Share Document