scholarly journals Expansion of glass waste by the double effect of liquid and solid foaming agents for manufacturing the cellular glass gravel (CGG) in a 10 kW-microwave oven

Author(s):  
Lucian Păunescu ◽  
◽  
Sorin Mircea Axinte ◽  
Marius Florin Drăgoescu ◽  
Bogdan Valentin Păunescu ◽  
...  
2021 ◽  
Vol 27 (1) ◽  
pp. 110-119
Author(s):  
LUCIAN PAUNESCU ◽  
SORIN MIRCEA AXINTE ◽  
MARIUS FLORIN DRAGOESCU ◽  
BOGDAN VALENTIN PAUNESCU ◽  
FELICIA COSMULESCU

The paper presents experimental results obtained in the manufacturing process of high-strength glass foam by combined use of two solid foaming agents (calcium carbonate and graphite) in variable weight ratios. The originality of the work is applying the unconventional microwave heating method, unlike the conventional techniques currently used in similar industrial processes. The optimal experimental variant, composed of 89.1 % glass waste, 0.9% calcium carbonate, 1 % graphite and other additives, was sintered at 828 ºC with a very low energy consumption (0.73 kWh/kg). The main characteristics of the optimal product were apparent density of 0.39 g/cm3, thermal conductivity of 0.088 W/m·K and compressive strength of 3.6 MPa, being usable in fields that requires resistance to mechanical stress and relatively difficult environmental conditions.


2021 ◽  
Vol 1 (6) ◽  
pp. 12-22
Author(s):  
Lucian Paunescu ◽  
Marius Florin Dragoescu ◽  
Sorin Mircea Axinte ◽  
Felicia Cosmulescu

The study aims to test an advanced technique but insufficiently valued in the world in the process of experimental manufacture of borosilicate glass foam. It is about the unconventional technique of heating solids by using the microwave radiation converted into heat. The experimental equipment on which the tests were performed was a 0.8-kW microwave oven commonly used in the household with constructive adaptations to be operational at high temperature. The adopted manufacturing recipe was composed of borosilicate glass waste with the addition of calcium carbonate, boric acid and water in different weight proportions. The material was sintered at 829-834 ºC by predominantly direct microwave heating and the optimal foamed product had characteristics similar to those manufactured by conventional techniques (apparent density of 0.33 g/cm3, thermal conductivity of 0.070 W/m•K, compressive strength of 3.1 MPa and a homogeneous microstructure with pore size between 0.7-1.0 mm). The energy efficiency of the unconventional manufacturing process was remarkable, the specific energy consumption being only 0.92 kWh/kg.


2020 ◽  
Vol 1 (3) ◽  
pp. 17-26
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Marius Florin Dragoescu ◽  
Felicia Cosmulescu

Abstract                                                         The aim of the paper was the experimental manufacture of cellular glass from glass waste and coal ash as raw material and silicon carbide as a foaming agent, using the unconventional microwave heating technique. This heating technique, although known since the last century and recognized worldwide as fast and economical, is not yet industrially applied in high temperature thermal processes. The cellular glass manufacturing process requires high temperatures and the use of microwaves in this process is the originality of the work. The experiments aimed at producing thermal insulating materials with high porosity and low thermal conductivity for building construction similar in terms of quality to those manufactured industrially by conventional techniques, but with lower energy consumption. The obtained samples had adequate characteristics (apparent density 0.22-0.32 g/cm3, porosity 85.5-90.0%, thermal conductivity 0.043-0.060 W/m·K, compressive strength 1.23-1.34 MPa), and the specific energy consumption was low (0.84-0.89 kWh/kg). Theoretically, given the use of microwave equipment on an industrial scale, this consumption comparable in value to that industrially achieved by conventional techniques could decrease by up to 25%.


2021 ◽  
Vol 771 ◽  
pp. 145276
Author(s):  
Robson Couto da Silva ◽  
Fabio Neves Puglieri ◽  
Daiane Maria de Genaro Chiroli ◽  
Guilherme Antonio Bartmeyer ◽  
Evaldo Toniolo Kubaski ◽  
...  

2021 ◽  
Vol 2 (3) ◽  
pp. 1-9
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Bogdan Valentin Paunescu

Abstract                                                         An innovation cold manufacturing method of glass foams is presented in the paper. Traditional foaming agents used in conventional expansion processes of glass waste at high temperature were substituted with aluminium powder in aqueous solution of calcium hydroxide, which releases hydrogen forming gas bubbles in the viscous sludge and then, by solidification, a porous structure typical for the glass foam. The manufactured foam is adequate for using as a thermal insulation material for inner wall of buildings, having the apparent density of 0.31 g·cm-3, the thermal conductivity of 0.070 W/m·K and the compressive strength of 1.32 MPa. The process originality is the use of recycled aluminum waste, melted by an own microwave heating technique and sprayed with nitrogen jets. The process effectiveness is remarkable in economical and energy terms.


2021 ◽  
Vol 2 (2) ◽  
pp. 37-46
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Felicia Cosmulescu

Abstract                                                         The experimental manufacture of foam glass gravel from glass waste has been quantitatively extended by increasing the power of the microwave oven from 0.8 to10 kW, the authors' interest being focused on the quality of the foamed product. The work equipment was rather improvised, the existing used oven not being adequate except to small extent for the requirements of the experiment, but it allowed obtaining a product similar to those industrially manufactured by conventional techniques. Using a recipe previously tested on the 0.8 kW-microwave oven composed of 1 wt.% glycerol as a liquid foaming agent together with 8 wt.% water glass as an enveloping agent and 8 wt.% water as a binder, the main features of the foam glass gravel lumps were: bulk density of 0.22 g/cm3, porosity of 88.9%, thermal conductivity of 0.057 W/m·K, compressive strength of 5.9 MPa and pore size between 0.10-0.30 mm. The specific energy consumption was negatively influenced by the excessive internal volume of the oven, but even under these conditions its value was relatively low (between 1.53-1.69 kWh/kg).


2014 ◽  
pp. 61-68
Author(s):  
Thitikorn Buasomboon ◽  
Orathai Chavalparit

This research investigated the feasibility of using cellular glass insulation waste as fine aggregate in concrete paving block production. The effect of mixing proportions of cellular glass insulation waste at 0-40% by volume was studied. Results show that the amount of cellular glass waste can be used as a substitute for fine aggregate or sand up to 20%. Concrete specimens tested for compressive strength were found to be within an acceptable range of the interlocking concrete blockpavingstandard set byThailand Industrial Standards Institute. The compressive strength at 28 d was 41.50 MPa, with density ranging from 2.18 to 2.20 g cm-3. Thus, recycling of cellular glass wastes forconcrete paving block production can reduce expenditures in purchasing natural aggregates and can minimize environmental impact attributed to solid waste disposal.


2005 ◽  
Vol 25 (4) ◽  
pp. 417-423
Author(s):  
M. L. Soriano-Martín ◽  
A. Porras-Piedra ◽  
A. Porras-Soriano ◽  
I. Marcilla-Goldaracena ◽  
M. L. Porras-Soriano

TAPPI Journal ◽  
2016 ◽  
Vol 15 (8) ◽  
pp. 515-521 ◽  
Author(s):  
EIJA KENTTÄ ◽  
HANNA KOSKELA ◽  
SARA PAUNONEN ◽  
KARITA KINNUNEN-RAUDASKOSKI ◽  
TUOMO HJELT

This paper reports experiments on silica coating formulations that are suitable for application as a thin pigment layer with foam coating technique on a paper web. To understand the foaming properties of nanosilica dispersions, the critical micelle concentration, foam half-life time, and foam bubble size stability were determined with three different foaming agents. The results indicate that the bubble stability measurement is a useful characterization method for foam coating purposes. Pilot foam coating trials were done and the effects of the chosen foaming agents were studied on the properties of the nanosilica-coated paper. The surface hydrophilicity of silica coated paper was related not only to silica pigment, but also to the chemical nature of the foaming agent. Standard paper properties were not affected by the thin silica coating.


Sign in / Sign up

Export Citation Format

Share Document