scholarly journals Experimental Use of Microwaves in the High Temperature Foaming Process of Glass Waste to Manufacture Heat Insulating Material in Building Construction

2020 ◽  
Vol 1 (3) ◽  
pp. 17-26
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Marius Florin Dragoescu ◽  
Felicia Cosmulescu

Abstract                                                         The aim of the paper was the experimental manufacture of cellular glass from glass waste and coal ash as raw material and silicon carbide as a foaming agent, using the unconventional microwave heating technique. This heating technique, although known since the last century and recognized worldwide as fast and economical, is not yet industrially applied in high temperature thermal processes. The cellular glass manufacturing process requires high temperatures and the use of microwaves in this process is the originality of the work. The experiments aimed at producing thermal insulating materials with high porosity and low thermal conductivity for building construction similar in terms of quality to those manufactured industrially by conventional techniques, but with lower energy consumption. The obtained samples had adequate characteristics (apparent density 0.22-0.32 g/cm3, porosity 85.5-90.0%, thermal conductivity 0.043-0.060 W/m·K, compressive strength 1.23-1.34 MPa), and the specific energy consumption was low (0.84-0.89 kWh/kg). Theoretically, given the use of microwave equipment on an industrial scale, this consumption comparable in value to that industrially achieved by conventional techniques could decrease by up to 25%.

2020 ◽  
Vol 1 (4) ◽  
pp. 18-27
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Marius Florin Dragoescu ◽  
Felicia Cosmulescu

Abstract                                                         The manufacture experimentation of a cellular glass exclusively from mineral waste and natural residues using the unconventional technique of microwave irradiation was the objective of the research whose results are presented in the paper. The originality of the paper results from the use of oak leaves as a vegetable foaming agent as well as the use of microwave energy in heating processes of the raw material powder mixture for manufacturing thermal insulating materials for the building construction. Worldwide, these processes use only conventional heating techniques. The experimental results led to the conclusion that both the use of waste and residues, as well as the unconventional heating technique allow to obtain porous materials with structural homogeneity having apparent densities and thermal conductivities that can decrease up to 0.34 g/cm3, and 0.071 W/m·K respectively. The compressive strength corresponding to the materials with the lowest values of density and thermal conductivity has an acceptable value (1.2 MPa) for the field of application. The specific energy consumption is around 1 kWh/kg, being approximately at the same level with the values of industrial consumptions achieved by conventional techniques.


2010 ◽  
Vol 638-642 ◽  
pp. 2172-2177
Author(s):  
Noburo Shikatani ◽  
Tatsuya Misawa ◽  
Yuji Kawakami ◽  
Michihiro Ohta

ZnO is heat-resistant and inexpensive, and the raw material of which is abundant, it is considered to be a good candidate thermoelectric material. Usually, a low-resistance n-type ZnO sintered body is obtained by doping 0.5-5 mol% Al2O3 followed by burning at a high temperature of approximately 1673K. However, this high-temperature burning has drawbacks, such as high power consumption and an increase in thermal conductivity with grain growth. Under these circumstances, we attempted to address these disadvantages. When ZnO was burned with Al as a dopant in an electric furnace at a temperature as low as approximately 1473K, ZnO with relatively good thermoelectric properties was obtained. In addition, the Al-doped sample showed lower electric resistance (332 K: 6.85×10-4Ωcm) than the Al2O3-doped sample, as determined on the basis of the resistance temperature characteristics of these samples. The causes of this low resistance may be as follows: 1) the metal-Al-mediated sample was densified by burning at a low temperature of approximately 1473K and 2) the Al distribution to the entire region of the ZnO bulk, resulting in the spread of Al solid-solution regions in the ZnO. We also found that the thermal conductivity decreased (973 K: 3.66 Wm-1K-1) in the Al-doped sample.


2021 ◽  
Vol 1 (6) ◽  
pp. 12-22
Author(s):  
Lucian Paunescu ◽  
Marius Florin Dragoescu ◽  
Sorin Mircea Axinte ◽  
Felicia Cosmulescu

The study aims to test an advanced technique but insufficiently valued in the world in the process of experimental manufacture of borosilicate glass foam. It is about the unconventional technique of heating solids by using the microwave radiation converted into heat. The experimental equipment on which the tests were performed was a 0.8-kW microwave oven commonly used in the household with constructive adaptations to be operational at high temperature. The adopted manufacturing recipe was composed of borosilicate glass waste with the addition of calcium carbonate, boric acid and water in different weight proportions. The material was sintered at 829-834 ºC by predominantly direct microwave heating and the optimal foamed product had characteristics similar to those manufactured by conventional techniques (apparent density of 0.33 g/cm3, thermal conductivity of 0.070 W/m•K, compressive strength of 3.1 MPa and a homogeneous microstructure with pore size between 0.7-1.0 mm). The energy efficiency of the unconventional manufacturing process was remarkable, the specific energy consumption being only 0.92 kWh/kg.


Author(s):  
Edgars Kirilovs ◽  
Silvija Kukle ◽  
Dana Beļakova ◽  
Anatolijs Borodiņecs ◽  
Ādolfs Ruciņš ◽  
...  

<p class="R-AbstractKeywords"><span lang="EN-US">Energy and raw material costs, an increase in environmental pollution, greenhouse gas emissions, global warming, depletion of fossil raw materials stimulate to seek and study alternatives to the synthetic fibers and products made of them for full or partial replacement. Renewable raw materials, including natural fiber sources, are the future of storage resources with a variety of positive effects on both the planet ecosystem and the living and working environment, and the energy consumption of delivering the required functionality. One of the most important energy-saving types is to reduce energy consumption in buildings by insulating them.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">For Latvian conditions suitable crops are historically grown flax and hemp. Within the framework of the studies, hemp stems are being used. Hemp compared with flax, are less suffering from diseases and less damaged by pests, so hemp cultivation is practically free from use of chemical pesticides and herbicides reducing the risk to the ecosystem.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">One of the most frequently mentioned industrial hemp raw materials positive qualities are their very wide use, practically all plant parts can be used in production of different products. This work explores the possibilities and technologies within the Latvian grown hemp stems to work into board materials with insulation capability.</span></p><p class="R-AbstractKeywords"><span lang="EN-US">Hemp fibers/shives mix boards can fulfill the main function of insulation materials, i.e., to reduce the transmission of heat, because they have a porous structure and low density. Material thermal insulation properties affect physical and structural properties of compounds. Cost effective particles board samples from chopped hemp stems with three types of adhesives and different thicknesses were produced and their thermal conductivity evaluated. The technologies applied and test results will be discussed in the paper. </span></p>


2020 ◽  
Vol 26 (1) ◽  
pp. 57-64
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE

The paper presents experimental results obtained in the process of making glass foam from glass waste using a cheap foaming agent (natural dolomite). The originality of the work is the application of the microwave energy, unlike the conventional techniques commonly used in the world. The main advantage highlighted by the experiments is the very low specific energy consumption (below 1.5 kWh/kg), due to the peculiarities of the microwave heating technique. The foamed product has physical, mechanical and morphological characteristics (density between 0.30-0.32 g/cm3, thermal conductivity between 0.064-0.067 W/m·K, compressive strength in the range 2.2-2.6 MPa), which are similar to those of foams made by conventional methods and are suitable for its use as insulating material in construction.


2020 ◽  
Vol 26 (3) ◽  
pp. 173-180
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE

The paper presents recent achievements in the microwave use for manufacturing foam glass gravel from recycled glass waste and silicon carbide. The aim was to obtain a product with physical and mechanical characteristics almost similar to those of industrially manufactured materials by conventional heating techniques, but with a higher energy efficiency. A foam glass with the thermal conductivity of 0.075 W/m·K and the compressive strength of 7.5 MPa was experimentally obtained. The specific energy consumption was of 1.0 kWh/kg comparable with the industrial processes and it could reach values up to 25% lower by using a high power industrial microwave equipment.


Holzforschung ◽  
2014 ◽  
Vol 68 (2) ◽  
pp. 195-201 ◽  
Author(s):  
Iina Solala ◽  
Toni Antikainen ◽  
Mehedi Reza ◽  
Leena-Sisko Johansson ◽  
Mark Hughes ◽  
...  

Abstract Spruce was submitted to high-temperature (150°C–170°C) refining for 2 or 5 min to produce thermomechanical pulp (TMP) fibers with decreased electrical energy consumption. The pulp was characterized in terms of specific energy consumption as well as tensile and surface properties. The fibers from high-temperature TMP contained more surface lignin even if all sample types usually broke at the S1–S2 cell wall region. They also produced significantly weaker paper sheets, whereas their dry zero-span strength did not suffer substantial losses, indicating decreased fiber-fiber bonding. Tensile strength properties were also determined of a bisphenol-A-epichlorohydrin-based epoxy resin mixed with 5% fiber as a test for fiber-matrix compatibility in composite applications. Based on these preliminary results, high-temperature TMP shows potential for composite reinforcement due to its lower tendency to aggregate and its better compatibility with the tested matrix material.


BioResources ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. 3569-3584
Author(s):  
Bin Li ◽  
Haiming Li ◽  
Quanqing Zha ◽  
Rohan Bandekar ◽  
Ahmed Alsaggaf ◽  
...  

For the thermomechanical pulping (TMP) process both wood chip quality and the refining process have important effects on the resulting pulp and paper quality. Properties of wood raw material give a framework for final pulp properties. During TMP refining the specific energy consumption and refining intensity strongly impact fibre and pulp qualities. Increasing specific energy consumption benefits the development of fibres and improves their properties. However, high intensity refining tends to shorten the fibres and produces more fines content when compared with low intensity refining. This review focuses on the influence of key variables of chip qualities and the refining process on TMP pulp and paper qualities.


DYNA ◽  
2021 ◽  
Vol 88 (217) ◽  
pp. 273-281
Author(s):  
Bernardo Herrera ◽  
Juan Rivas ◽  
Jorge Muñoz ◽  
Karen Cacua

This paper presents an experimental study carried out in an industrial furnace for frits production using different configurations of burners based on different combustion techniques such as enriched air combustion, flat-flame oxy-combustion and preheater air combustion. The residence time of combustion gases inside the furnace also was modified. Several combustion configurations were tested and its effects on productivity and thermal energy specific consumption and efficiency were determined. The results show that higher residence time of the combustion gases can decrease significantly the specific consumption of fuel, while the change of the burners and combustion techniques did not show significant effects on decreasing the energy consumption. However, it is highlighted that the oxy-combustion flat-flame burners produced the lowest specific consumption of fuel. Even though the experiments were conducted in a furnace for frit production, the corresponding results can also be applied to guide or improve other industrial high temperature processes.


2021 ◽  
Vol 2 (3) ◽  
pp. 1-9
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Bogdan Valentin Paunescu

Abstract                                                         An innovation cold manufacturing method of glass foams is presented in the paper. Traditional foaming agents used in conventional expansion processes of glass waste at high temperature were substituted with aluminium powder in aqueous solution of calcium hydroxide, which releases hydrogen forming gas bubbles in the viscous sludge and then, by solidification, a porous structure typical for the glass foam. The manufactured foam is adequate for using as a thermal insulation material for inner wall of buildings, having the apparent density of 0.31 g·cm-3, the thermal conductivity of 0.070 W/m·K and the compressive strength of 1.32 MPa. The process originality is the use of recycled aluminum waste, melted by an own microwave heating technique and sprayed with nitrogen jets. The process effectiveness is remarkable in economical and energy terms.


Sign in / Sign up

Export Citation Format

Share Document