scholarly journals Analysis of Fuel Injection Pressure Effect on Diesel Engine Combustion Opacity Value

Author(s):  
Andi Firdaus Sudarma ◽  
Hadi Pranoto ◽  
Mardani A. Sera ◽  
Amiruddin Aziz

The use of diesel engines for vehicle applications has expanded for decades. However, it produces black smoke in the form of particulate matter contains fine and invisible particles during operation. The popular method for measuring the smoke opacity is by using a smoke meter for its simplicity and less costly. Fuel injection pressure is one of the parameters that affect the emission significantly, and the proper nozzle adjustment can reduce the density of exhaust gases and improve the engine performance. The purpose of this study is to determine the optimum fuel spray pressure that produces the lowest opacity value and analyse the effect of fuel spray pressure on the opacity value at a different engine speed. The present experiment uses the Hyundai D4BB engine, and the pressure variations were implemented on the injector nozzle at 125, 130, and 135 kg/cm2. The engine was also tested with various engine idle speed, i.e., 1000, 1500, 2000, and 2500 rpm. It has been found that the optimum distance of fuel spraying is 147.679 mm with injector nozzle pressure 130 kg/cm2, and the value of opacity is 9.51%.

2016 ◽  
Vol 2016 (0) ◽  
pp. G0700102
Author(s):  
Shun SHIMOTSUMAGARI ◽  
Takeru IWAMOTO ◽  
Masaoki SUGIHARA ◽  
Hideki HASHIMOTO ◽  
Osamu MORIUE

Author(s):  
Girish Parvate-Patil ◽  
Manuel Vasquez ◽  
Malcolm Payne

This paper emphasizes on the effects of different biodiesels and diesel on; heat release, ignition delay, endothermic and exothermic reactions, NOx, fuel injection pressure due to the fuel’s modulus of elasticity and cylinder pressure. Two 100% biodiesel and its blends of 20% with of low sulfur #2 diesel, and #2 diesel are tested on a single cylinder diesel engine under full load condition. Engine performance and emissions data is obtained for 100% and 20% biodiesels blends and #2 diesel. Testes were conducted at Engine Systems Development Centre, Inc. (ESDC) to evaluate the effects of biodiesel and its blends on the performance and emissions of a single-cylinder medium-speed diesel engine. The main objective of this work was to gain initial information and experience about biodiesel for railway application based on which biodiesel and its blends could be recommended for further investigation on actual locomotives.


2012 ◽  
Vol 4 (4) ◽  
pp. 381-385
Author(s):  
Birutė Skukauskaitė ◽  
Tomas Mickevičius

The purpose of this research was to examine penetration peculiarities of rapeseed oil injected into the combustion chamber of a diesel engine. For conducting tests, a stand imitating conditions (air density) for the engine combustion chamber was designed. The analysis of pictures obtained using a fast recording camera determined fuel injection into the chamber volume and calculated the velocity of spray head. It was established that fuel spray of injected rapeseed oil proceeds deeper into the combustion chamber than that of mineral diesel fuel. The parameters of fuel spray are mainly influenced by injection pressure rather than by the density of compressed gases. Santrauka Šio darbo tikslas buvo ištirti į dyzelinio variklio degimo kamerą įpurškiamos rapsų aliejaus čiurkšlės kitimo ypatumus, lyginant su mineraliniu dyzelinu. Tyrimams sukonstruotas stendas, kuriame buvo imituojamos sąlygos (oro tankis), esančios variklio degimo kameroje. Analizuojant spartaus filmavimo vaizdo kamera gautus vaizdus, buvo išmatuotas degalų čiurkšlės įsiskverbimo į degimo kamerą dydis, apskaičiuotas čiurkšlės fronto judėjimo greitis. Nustatyta, kad įpurškiamo rapsų aliejaus čiurkšlė į degimo kamerą įsiskverbia giliau, negu mineralinio dyzelino čiurkšlė. Įpurškiamų degalų čiurkšlės parametrams didesnės įtakos turi įpurškimo slėgis nei aplinkos dujų tankis.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Akhilendra Pratap Singh ◽  
Nikhil Sharma ◽  
Dev Prakash Satsangi ◽  
Avinash Kumar Agarwal

Abstract Reactivity controlled compression ignition (RCCI) mode combustion has attracted significant attention because of its superior engine performance and significantly lower emissions of oxides of nitrogen (NOx) and particulate matter (PM) compared with conventional compression ignition (CI) mode combustion engines. In this experimental study, effects of fuel injection pressure (FIP) of high reactivity fuel (HRF) and premixed ratio of low reactivity fuel (LRF) were evaluated on a diesel-methanol fueled RCCI mode combustion engine. Experiments were performed in a single cylinder research engine at a constant engine speed (1500 rpm) and constant engine load (3 bar BMEP) using three different FIPs (500, 750, and 1000 bar) of mineral diesel and four different premixed ratios (rp = 0, 0.25, 0.50, and 0.75) of methanol. Results showed that RCCI mode resulted in more stable combustion compared with baseline CI mode combustion. Increasing FIP resulted in relatively higher knocking, but it reduced with increasing premixed ratio. Relatively higher brake thermal efficiency (BTE) of RCCI mode combustion compared with baseline CI mode combustion is an important finding of this study. BTE increased with increasing FIP of mineral diesel and increasing premixed ratio of methanol. Relatively dominant effect of increasing FIP on BTE at higher premixed ratios of methanol was also an important finding of this study. RCCI mode combustion resulted in higher carbon monoxide (CO) and hydrocarbon (HC) emissions, but lower PM and NOx emissions compared with baseline CI mode combustion. Increasing FIP of HRF at lower premixed ratios reduced the number concentration of particles; however, effect of FIP became less dominant at higher premixed ratios. Relatively higher number emissions of nanoparticles at higher FIPs were observed. Statistical and qualitative correlations exhibited the importance of suitable FIP at different premixed ratios of LRF on emission characteristics of RCCI mode combustion engine.


Author(s):  
Pal Vishal H.

Alternative fuels for diesel engines have become increasingly important due to several socioeconomic aspects, imminent depletion of fossil fuel and growing environmental concerns. Global warming concerns due to the production of greenhouse gases (GHGs) such as carbon dioxide (CO2) as results from internal combustion engine have seen as one of major factor the promotion of the use of biofuels. Therefore, the use of biodiesel fuel (BDF) as an alternative for fossil diesel (DSL) is among the effective way to reduce the CO2 emission. In this experimental study, the effects on engine performance and fuel-induced emission characteristics were studied using fuel blends and under different fuel injection pressure. Even though the brake thermal efficiency was obtained maximum for the conventional diesel at standard operating condition, the same can also be achieved with biodiesel blends by increasing the injection pressure higher than that of the level used for conventional diesel. This experimental test was done using a small 4-stroke single cylinder diesel engine with electric dynamometer loads integrated with emission gas analyser that attached to the exhaust pipeline. As results of experimental investigations, decreasing in NOX Emission, SOX Emission, CO Emission and also brake specific fuel consumption compare to pure diesel.


Sign in / Sign up

Export Citation Format

Share Document