scholarly journals RESEARCH ON THE PROCESS OF BIOFUEL INJECTION / BIODEGALŲ IŠPURŠKIMO PROCESO TYRIMAS

2012 ◽  
Vol 4 (4) ◽  
pp. 381-385
Author(s):  
Birutė Skukauskaitė ◽  
Tomas Mickevičius

The purpose of this research was to examine penetration peculiarities of rapeseed oil injected into the combustion chamber of a diesel engine. For conducting tests, a stand imitating conditions (air density) for the engine combustion chamber was designed. The analysis of pictures obtained using a fast recording camera determined fuel injection into the chamber volume and calculated the velocity of spray head. It was established that fuel spray of injected rapeseed oil proceeds deeper into the combustion chamber than that of mineral diesel fuel. The parameters of fuel spray are mainly influenced by injection pressure rather than by the density of compressed gases. Santrauka Šio darbo tikslas buvo ištirti į dyzelinio variklio degimo kamerą įpurškiamos rapsų aliejaus čiurkšlės kitimo ypatumus, lyginant su mineraliniu dyzelinu. Tyrimams sukonstruotas stendas, kuriame buvo imituojamos sąlygos (oro tankis), esančios variklio degimo kameroje. Analizuojant spartaus filmavimo vaizdo kamera gautus vaizdus, buvo išmatuotas degalų čiurkšlės įsiskverbimo į degimo kamerą dydis, apskaičiuotas čiurkšlės fronto judėjimo greitis. Nustatyta, kad įpurškiamo rapsų aliejaus čiurkšlė į degimo kamerą įsiskverbia giliau, negu mineralinio dyzelino čiurkšlė. Įpurškiamų degalų čiurkšlės parametrams didesnės įtakos turi įpurškimo slėgis nei aplinkos dujų tankis.

Author(s):  

The necessity of adapting diesel engines to work on vegetable oils is justified. The possibility of using rapeseed oil and its mixtures with petroleum diesel fuel as motor fuels is considered. Experimental studies of fuel injection of small high-speed diesel engine type MD-6 (1 Ch 8,0/7,5)when using diesel oil and rapeseed oil and computational studies of auto-tractor diesel engine type D-245.12 (1 ChN 11/12,5), working on blends of petroleum diesel fuel and rapeseed oil. When switching autotractor diesel engine from diesel fuel to rapeseed oil in the full-fuel mode, the mass cycle fuel supply increased by 12 %, and in the small-size high-speed diesel engine – by about 27 %. From the point of view of the flow of the working process of these diesel engines, changes in other parameters of the fuel injection process are less significant. Keywords diesel engine; petroleum diesel fuel; vegetable oil; rapeseed oil; high pressure fuel pump; fuel injector; sprayer


Biofuels derived from vegetable oils are known to be promising alternative fuels for diesel engines. The possibility of using mixtures of petroleum diesel fuel with rapeseed oil and rapeseed oil methyl ester as environmentally friendly motor fuels is considered. The practicability of changing the composition of these mixtures in accordance with the engine operating mode is shown. A technique for multicriteria optimization of the composition of such mixed biofuels is suggested. The basic characteristics of the optimal composition of these mixed biofuels are calculated. A device for regulating fuel’s composition is proposed. The basic characteristic of regulation of the blended biofuel composition realized by the device is presented. Keywords diesel engine; combustion chamber; oil diesel fuel; rapeseed oil; rapeseed oil methyl ester; biofuel mixture; ecological characteristics; exhaust gases toxicity


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


2016 ◽  
Vol 2016 (0) ◽  
pp. G0700102
Author(s):  
Shun SHIMOTSUMAGARI ◽  
Takeru IWAMOTO ◽  
Masaoki SUGIHARA ◽  
Hideki HASHIMOTO ◽  
Osamu MORIUE

Author(s):  
Andi Firdaus Sudarma ◽  
Hadi Pranoto ◽  
Mardani A. Sera ◽  
Amiruddin Aziz

The use of diesel engines for vehicle applications has expanded for decades. However, it produces black smoke in the form of particulate matter contains fine and invisible particles during operation. The popular method for measuring the smoke opacity is by using a smoke meter for its simplicity and less costly. Fuel injection pressure is one of the parameters that affect the emission significantly, and the proper nozzle adjustment can reduce the density of exhaust gases and improve the engine performance. The purpose of this study is to determine the optimum fuel spray pressure that produces the lowest opacity value and analyse the effect of fuel spray pressure on the opacity value at a different engine speed. The present experiment uses the Hyundai D4BB engine, and the pressure variations were implemented on the injector nozzle at 125, 130, and 135 kg/cm2. The engine was also tested with various engine idle speed, i.e., 1000, 1500, 2000, and 2500 rpm. It has been found that the optimum distance of fuel spraying is 147.679 mm with injector nozzle pressure 130 kg/cm2, and the value of opacity is 9.51%.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2343 ◽  
Author(s):  
Yao Fu ◽  
Liyan Feng ◽  
Hua Tian ◽  
Wuqiang Long ◽  
Dongsheng Dong ◽  
...  

The double-layer diverging combustion chamber (DLDC chamber) aims to improve the fuel–air mixing formation and promote in-cylinder air utilization by changing fuel spray spreading characteristics. In order to investigate how the DLDC chamber profile and injection parameters affect the fuel spray spreading, visualization of fuel injection and impingement tests were carried out on two different DLDC chambers with different fuel injection parameters. The visualization test results showed that double-layer fuel spray spreading was obtained in the two DLDC chambers and the peripheral top clearance of each chamber was utilized efficiently. The DLDC chamber with a 50% upper layer volume provided a larger fuel spray distribution region after the start of injection. The DLDC chamber with a 70% upper layer volume obtained a larger fuel spray distribution region with better top clearance utilization at the later stage of injection. The injection parameters mentioned in this research showed significant effects on the fuel spray spreading in the DLDC chamber. Increasing the injection pressure provided a larger fuel spray distribution area at the beginning of injection. Decreasing the nozzle hole diameter had a positive influence on obtaining a larger fuel spray distribution. Advancing the injection timing enabled the enlarging of the fuel distribution region.


Author(s):  
Jim Cowart ◽  
Dianne Luning Prak ◽  
Len Hamilton

In an effort to understand the effects of injection system pressure on alternative fuel performance, a single cylinder diesel engine was outfit with a modern common rail fuel injection system and piezoelectric injector. As future new fuels will likely be used in both older mechanical injected engines as well as newer high pressure common rail engines, the question as to the sensitivity of a new fuel type across a range of engines is of concern. In this study conventional diesel fuel (Navy NATO F76) was compared with the new Navy HRD (Hydro-processed Renewable Diesel) fuel from algal sources, as well as the high cetane reference fuel nC16 (n-hexadecane CN=100). It was seen that in general, IGD (Ignition Delay) was shortened for all fuels with increasing fuel injection pressure, and was shortened with higher CN fuels. The combustion duration for all fuels was also significantly reduced with increasing fuel injection pressure, however, longer durations were seen for higher CN fuels at the same fuel pressure due to less pre-mixing before the start of combustion. Companion modeling using the LLNL (Lawrence Livermore National Lab) heavy hydro-carbon and diesel PRF chemical kinetic mechanisms for HRD and nC16 was applied to understand the relative importance of the physical and chemical delay periods of the IGD. It was seen that at low fuel injection pressures, the physical and chemical delay times are of comparable duration. However, as injection pressure increases the importance of the chemical delay times increases significantly (longer), especially with the lower CN fuel.


Complete and clean combustion is always desirable for better performance of engine and less emissions. An experimental work is carried in constant volume combustion chamber for getting conditions like diesel engine combustion to study the ignition delay characteristics of diesel engine combustion by varying combustion chamber air pressure. In this experimental work, air pressure of combustion chamber varied from 10 to 25 bar, hot surface temperature inside the combustion chamber varied from 350°C to 550°C and fuel injection pressures varied from 100 to 200 bar for hollow cone spray and solid cone spray . For this work a set-up is made in which the flame detection is done by digital storage oscilloscope using an optical method. The findings of the work suggests that combustion chamber air pressure and injection pressure are significantly varies the values of ignition delay at a particular hot surface temperature. It is also find that on increasing the values of combustion chamber air pressure and injection pressure, ignition delay values are decreases although the variation in ignition delay is less at higher injection pressure and combustion chamber air pressure.


2021 ◽  
Vol 268 ◽  
pp. 01026
Author(s):  
Jizhou Zhang ◽  
Fuwu Yan ◽  
Yu Wang

For a certain type of direct injection diesel engine, a three-dimensional model of a single-cylinder complete combustion chamber and in-take/exhaust port was established. Three-dimensional Computational Fluid Dynamics (CFD) analysis software CONVERGE was used for simulation. The effects of fuel injection strategy and combustion chamber geometry on combustion emissions of diesel engine were studied while the combustion chamber volume, engine compression ratio, total fuel injection quantity and total injection duration were kept unchanged. The results show that the strategy of multiple injection and reasonable shape of combustion chamber can effectively increase the turbulent kinetic energy in cylinder, improve the uniformity of oil-gas mixing, reduce the emission of pollutants, and increase the quality of after injection can further reduce the emissions of NOx and soot.


Sign in / Sign up

Export Citation Format

Share Document