Case Study of the Relationship between Aerosol Angstrom Exponent and Relative Humidity

2015 ◽  
Vol 42 (7) ◽  
pp. 0713002 ◽  
Author(s):  
伯广宇 Bo Guangyu ◽  
谢晨波 Xie Chenbo ◽  
王邦新 Wang Bangxin ◽  
吴德成 Wu Decheng ◽  
钟志庆 Zhong Zhiqing
2021 ◽  
Vol 248 ◽  
pp. 105217
Author(s):  
Ja-Ho Koo ◽  
Juhee Lee ◽  
Jhoon Kim ◽  
Thomas F. Eck ◽  
David M. Giles ◽  
...  

2015 ◽  
Vol 15 (8) ◽  
pp. 12583-12616
Author(s):  
A. Skupin ◽  
A. Ansmann ◽  
R. Engelmann ◽  
P. Seifert ◽  
T. Müller

Abstract. The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30–50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300–1000 nm) on relative humidity up to almost 100% was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80%. The respective four-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidty increase from 40 to 95%. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.463 for the 2009–2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yield good agreement. Also, time series of the particle extinction coefficient computed from in-situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40% relative humidity) were found in good overall consistency, which corroborates the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390–881 nm Ångström exponent from, on average, 0.3 (at 30% relative humidity) to 1.3 (at 95% relative humidity) for the four-year period.


2008 ◽  
Vol 8 (4) ◽  
pp. 12721-12736
Author(s):  
G.-J. Roelofs ◽  
V. Kamphuis

Abstract. With a cloud parcel model we investigated how cloud processing and cloud evaporation modify the size distribution and the Angström exponent of an aerosol population. Cloud processing causes a decrease in particle concentrations, relatively most efficiently in the coarse mode, and reduces the relative dispersion of the aerosol distribution. As a result the Angström exponent of the aerosol increases. The Angström exponent is subject to other influences. It is very sensitive for relative humidity, especially between 95% and 100%. In addition, kinetic limitations delay droplet evaporation during cloud dissipation, which hampers a direct relation between the Angström exponent and the relative humidity. Consequently, a direct interpretation of the Angström exponent in terms of aerosol properties that play a role in aerosol-cloud interactions, such as the fine mode fraction, is rather complex.


2009 ◽  
Vol 9 (1) ◽  
pp. 71-80 ◽  
Author(s):  
G.-J. Roelofs ◽  
V. Kamphuis

Abstract. With a cloud parcel model we investigate how cloud processing and cloud evaporation modify the size distribution and the Angström exponent of an aerosol population. Our study provides a new explanation for the observed variability of the aerosol optical thickness and Angström exponent in the vicinity of clouds. Cloud processing causes a decrease of aerosol particle concentrations, relatively most efficiently in the coarse mode, and reduces the relative dispersion of the aerosol distribution. As a result the Angström exponent of the aerosol increases. The Angström exponent is very sensitive for changes in relative humidity during cloud evaporation, especially between 90% and 100%. In addition, kinetic limitations delay evaporation of relatively large cloud drops, especially in clean and mildly polluted environments where the coarse mode fraction is relatively large. This hampers a direct relation between the aerosol optical thickness, the Angström exponent and the ambient relative humidity, which may severely complicate interpretation of these parameters in terms of aerosol properties, such as the fine mode fraction.


2016 ◽  
Vol 16 (4) ◽  
pp. 1863-1876 ◽  
Author(s):  
A. Skupin ◽  
A. Ansmann ◽  
R. Engelmann ◽  
P. Seifert ◽  
T. Müller

Abstract. The ambient aerosol particle extinction coefficient is measured with the Spectral Aerosol Extinction Monitoring System (SÆMS) along a 2.84 km horizontal path at 30–50 m height above ground in the urban environment of Leipzig (51.3° N, 12.4° E), Germany, since 2009. The dependence of the particle extinction coefficient (wavelength range from 300 to 1000 nm) on relative humidity up to almost 100 % was investigated. The main results are presented. For the wavelength of 550 nm, the mean extinction enhancement factor was found to be 1.75 ± 0.4 for an increase of relative humidity from 40 to 80 %. The respective 4-year mean extinction enhancement factor is 2.8 ± 0.6 for a relative-humidity increase from 40 to 95 %. A parameterization of the dependency of the urban particle extinction coefficient on relative humidity is presented. A mean hygroscopic exponent of 0.46 for the 2009–2012 period was determined. Based on a backward trajectory cluster analysis, the dependence of several aerosol optical properties for eight air flow regimes was investigated. Large differences were not found, indicating that local pollution sources widely control the aerosol conditions over the urban site. The comparison of the SÆMS extinction coefficient statistics with respective statistics from ambient AERONET sun photometer observations yields good agreement. Also, time series of the particle extinction coefficient computed from in situ-measured dry particle size distributions and humidity-corrected SÆMS extinction values (for 40 % relative humidity) were found in good overall consistency, which verifies the applicability of the developed humidity parameterization scheme. The analysis of the spectral dependence of particle extinction (Ångström exponent) revealed an increase of the 390–881 nm Ångström exponent from, on average, 0.3 (at 30 % relative humidity) to 1.3 (at 95 % relative humidity) for the 4-year period.


2013 ◽  
Vol 6 (10) ◽  
pp. 2659-2669 ◽  
Author(s):  
A. Bayat ◽  
H. R. Khalesifard ◽  
A. Masoumi

Abstract. The polarized phase function of atmospheric aerosols has been investigated for the atmosphere of Zanjan, a city in northwest Iran. To do this, aerosol optical depth, Ångström exponent, single-scattering albedo, and polarized phase function have been retrieved from the measurements of a Cimel CE 318-2 polarized sun-photometer from February 2010 to December 2012. The results show that the maximum value of aerosol polarized phase function as well as the polarized phase function retrieved for a specific scattering angle (i.e., 60°) are strongly correlated (R = 0.95 and 0.95, respectively) with the Ångström exponent. The latter has a meaningful variation with respect to the changes in the complex refractive index of the atmospheric aerosols. Furthermore the polarized phase function shows a moderate negative correlation with respect to the atmospheric aerosol optical depth and single-scattering albedo (R = −0.76 and −0.33, respectively). Therefore the polarized phase function can be regarded as a key parameter to characterize the atmospheric particles of the region – a populated city in the semi-arid area and surrounded by some dust sources of the Earth's dust belt.


2006 ◽  
Vol 6 (3) ◽  
pp. 697-713 ◽  
Author(s):  
G. Pace ◽  
A. di Sarra ◽  
D. Meloni ◽  
S. Piacentino ◽  
P. Chamard

Abstract. Aerosol optical depth and Ångström exponent were obtained from multi filter rotating shadowband radiometer (MFRSR) observations carried out at the island of Lampedusa, in the Central Mediterranean, in the period July 2001–September 2003. The average aerosol optical depth at 495.7 nm, τ, is 0.24±0.14; the average Ångström exponent, α, is 0.86±0.63. The observed values of τ range from 0.03 to 1.13, and the values of α vary from −0.32 to 2.05, indicating a large variability in aerosol content and size. In cloud-free conditions, 36% of the airmasses come from Africa, 25% from Central-Eastern Europe, and 19% from Western France, Spain and the North Atlantic. In summer, 42% of the airmasses is of African origin. In almost all cases African aerosols display high values of τ and low values of α, typical of Saharan dust (average values of τ and α are 0.36 and 0.42, respectively). Particles originating from Central-Eastern Europe show relatively large average values of τ and α (0.23 and 1.5, respectively), while particles from Western France, Spain and the North Atlantic show the lowest average values of τ (0.15), and relatively small values of α (0.92). Intermediate values of α are often connected with relatively fast changes of the airmass originating sector, suggesting the contemporary presence of different types of particles in the air column. Clean marine conditions are rare at Lampedusa, and are generally associated with subsidence of the airmasses reaching the island. Average values of τ and α for clean marine conditions are 0.11 and 0.86, respectively. The largest values of α (about 2) were observed in August 2003, when large scale forest fires in Southern Europe produced consistent amounts of fine combustion particles, that were transported to the Central Mediterranean by a persistent high pressure system over Central Europe. Smoke particles in some cases mix with desert dust, producing intermediate values of α. The seasonal distribution of the meteorological patterns over the Mediterranean, the efficiency of the aerosol production mechanisms, and the variability of the particles' residence time produce a distinct seasonal cycle of aerosol optical depths and Ångström exponent values. Particles originating from all sectors show a summer maximum in aerosol optical depth. The summer increase in optical depth for European aerosols is linked with an increment in the values of α, that indicates an enhancement in the number of fine particles. The summer maximum of τ for African particles is associated with a weak reduction in the Ångström exponent, suggesting an increase in the total number of particles and a relatively more intense transport of large particles. The observations were classified according to the aerosol optical properties, and two main classes have been identified: desert dust and biomass burning/urban-industrial aerosols. Values of τ and α averaged over the whole observing period are 0.37 and 0.15 for desert dust, and 0.27 and 1.77 for urban-industrial/biomass burning aerosols.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1469
Author(s):  
Alba López-Caravaca ◽  
Ramón Castañer ◽  
Alvaro Clemente ◽  
Eduardo Yubero ◽  
Nuria Galindo ◽  
...  

The influence of three Saharan dust events (SDE) on particulate matter (PM) concentrations and aerosol optical properties (AOP) during February 2021 was studied. The physical characteristics of the African aerosol were different for each episode. Therefore, the impacts of the three events on PM and AOP were analyzed separately. The monitoring sites were placed in Elche, in the southeast of the Iberian Peninsula. The sites can be classified as urban background locations. The procedure used to obtain the contribution of SDE to PM10 mass concentrations was the 40th percentile method. Nearly half of the days during the study period were under the influence of Saharan air masses. The average contribution of mineral dust (MD) to the PM10 mean concentration was ~50%, which was the highest contribution during the month of February in the last 14 years. The results show that those events characterized by a high input of fine particles (PM1 and PM2.5) caused larger increases in the absorption (σap) and scattering (σsp) coefficients than SDE in which coarse particles predominated. Nevertheless, as expected, SAE (Scattering Angström Exponent) values were lowest during these episodes. AAE (Absorption Angström Exponent) values during SDE were slightly higher than those observed in the absence of African dust, suggesting some contribution from MD to the absorption process.


Sign in / Sign up

Export Citation Format

Share Document