Applications of measurement techniques based on lasers in combustion flow field diagnostics

2018 ◽  
Vol 11 (4) ◽  
pp. 531-549
Author(s):  
刘晶儒 LIU Jing-ru ◽  
胡志云 HU Zhi-yun
2020 ◽  
Author(s):  
Diana De Padova ◽  
Michele Mossa

Turbulence and undertow currents play an important role in surf-zone mixing and transport processes; therefore, their study is fundamental for the understanding of nearshore dynamics and the related planning and management of coastal engineering activities. Pioneering studies qualitatively described the features of breakers in the outer region of the surf zone. More detailed information on the velocity field under spilling and plunging breakers can be found in experimental works, where single-point measurement techniques, such as Hot Wire Anemometry and Laser Doppler Anemometry (LDA), were used to provide maps of the flow field in a time-averaged or ensemble-averaged sense. Moreover, the advent of non-intrusive measuring techniques, such as Particle Image Velocimetry (PIV) provided accurate and detailed instantaneous spatial maps of the flow field. However, by correlating spatial gradients of the measured velocity components, the instantaneous vorticity maps could be deduced. Moreover, the difficulties of measuring velocity due to the existence of air bubbles entrained by the plunging jet have hindered many experimental studies on wave breaking encouraging the development of numerical model as useful tool to assisting in the interpretation and even the discovery of new phenomena. Therefore, the development of an WCSPH method using the RANS equations coupled with a two-equation k–ε model for turbulent stresses has been employed to study of the turbulence and vorticity distributions in in the breaking region observing that these two aspects greatly influence many coastal processes, such as undertow currents, sediment transport and action on maritime structures.


2019 ◽  
Vol 46 (7) ◽  
pp. 0711001
Author(s):  
张步强 Buqiang Zhang ◽  
许振宇 Zhenyu Xu ◽  
刘建国 Jianguo Liu ◽  
夏晖晖 Huihui Xia ◽  
聂伟 Wei Nie ◽  
...  

AIP Advances ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 055022 ◽  
Author(s):  
Min Yao ◽  
Yueqi Zhang ◽  
Min Zhao ◽  
Ruipeng Guo ◽  
Jun Xu

Author(s):  
M. Berrino ◽  
D. Lengani ◽  
F. Satta ◽  
M. Ubaldi ◽  
P. Zunino ◽  
...  

The present paper is focused on the investigation of the dynamics of the flow downstream of an Ultra Low NOx (ULN) injection system, designed to reduce NOx emissions and combustor axial length. Two rectangular flame tubes have been experimentally investigated: one aimed at simulating an unconfined exit flow, and another with the same transverse dimensions of the combustor annular sector, to simulate the confined flow field. The effects induced by the realistic flame tube presence are investigated comparing the flow field with that generated in the unconfined case. Particular attention is paid to the vortex breakdown phenomena associated with the flow generated by the two co-rotating swirlers constituting the injection system. Two different and complementary measurement techniques have been adopted to characterize the aerodynamics of the vortex breakdown. The hot-wire investigation results reveal the frequencies associated with the precession motion due to the vortex breakdown. The Particle Image Velocimetry technique has been coupled with Proper Orthogonal Decomposition (POD) for data post-processing in order to reconstruct the swirling motion generated by the injection system. The property of POD, which consists of splitting temporal from spatial information of the flow field in analysis, allows the distinction between deterministic and random fluctuations without the need of an external trigger signal. This feature is fundamental for the better understanding of an highly-swirling flow.


Author(s):  
Zhibo Zhang ◽  
Hongtao Zheng ◽  
Honglei Yang ◽  
Ren Yang ◽  
Qian Liu ◽  
...  

Lean blowout (LBO) plays an important role in combustor performance. A new method named Feature-Section-criterion (FSC) for predicting the LBO of annular combustor has been put forward and expounded in this paper. A CFD software FLUENT has been used to simulate the combustion flow field of an annular combustor. The process of blowout and effects of flow split among swirlers and primary holes have been researched by using of FSC. The result shows that the predictions of FSC are in agreement with corresponding experimental data. So this method for predicting lean blowout is reliable and can be used for engineering applications.


Author(s):  
Marco Sacchi ◽  
Daniele Simoni ◽  
Marina Ubaldi ◽  
Pietro Zunino ◽  
Stefano Zecchi

The secondary flow field in a large-scale high-pressure turbine cascade with micro-holed endwall cooling has been investigated at the Genova Laboratory of Aerodynamics and Turbomachinery in cooperation with Avio S.p.A in the framework of the European Project AITEB-2. The experimental investigation has been performed for the baseline configuration, with a smooth solid endwall installed, and for the cooled configuration with a micro-holed endwall providing micro-jets ejection from the wall. Two different cooling flow rates were investigated and the experimental results are reported in the paper. Different measurement techniques have been employed to analyze the secondary flow field along the channel and in a downstream tangential plane. Particle Image Velocimetry has been utilized to quantify the blade-to-blade velocity components in a plane located close to the endwall and in the midspan plane. Hot-wire measurements have been performed in a tangential plane downstream of the blade trailing edges in order to survey the micro-jets effects on the secondary flows behavior. The total pressure distributions, for the different blowing conditions, have been measured in the downstream tangential plane by means of a Kiel pneumatic probe. The results, represented in color plots of velocity, pressure loss coefficient and turbulent kinetic energy distributions, allow the identification of the endwall effusion cooling effects on location and strength of the secondary vortical structures. The thermal investigation of the effusion system is discussed in Part 2 of the paper.


2011 ◽  
Vol 56 (35) ◽  
pp. 3871-3877 ◽  
Author(s):  
Wei Huang ◽  
ZhenGuo Wang ◽  
ShiBin Luo ◽  
Jun Liu

Author(s):  
Gunnar Jacobi ◽  
Alex Nila

Due to their good mechanical properties composite materials are increasingly applied for the construction of lifting surfaces in the maritime industry. However, besides improving the strength to weight ratio of a structure, the anisotropic material properties can also exhibit bend-twist coupling, when exposed to higher loads. In order to experimentally measure the fluid structure interaction, the object of investigation needs to exposed to the same fluid loadings, as it would experience during operation. To investigate the possibility to obtain simultaneous deformation and flow field measurements in a large hydrodynamic testing facility simultaneous PIV and DIC measurements are performed to obtain the deformation of a flexible NACA 0008 hydrofoil and to measure the flow field in the wing tip region. For the assessment of the performance of the methods two scenarios are presented including tests in stationary conditions with constant angles of attack and forced plunging oscillations. The calibration of both measurement systems is done independently and the wing tip, visible in the PIV images, is used for triangulation to find the position of the wing within the PIV coordinate system. The combination of both measurement techniques allows for an accurate determination of tip vortex center positions with respect to the deformed wing and their evolution downstream of the wing. During forced plunging motions, the phase lag of the wing tip and the influence on the wing tip vortex is observed.


2020 ◽  
Vol 69 (23) ◽  
pp. 234207
Author(s):  
Shuai-Yao Li ◽  
Da-Yuan Zhang ◽  
Qiang Gao ◽  
Bo Li ◽  
Yong He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document