Action recognition method of spatio-temporal feature fusion deep learning network

2018 ◽  
Vol 47 (2) ◽  
pp. 203007
Author(s):  
裴晓敏 Pei Xiaomin ◽  
范慧杰 Fan Huijie ◽  
唐延东 Tang Yandong
2021 ◽  
Vol 14 (2) ◽  
pp. 239-251
Author(s):  
Hualei Zhang ◽  
Mohammad Asif Ikbal

PurposeIn response to these shortcomings, this paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.Design/methodology/approachThe existing dynamic obstacle detection and tracking methods based on geometric features have a high false detection rate. The recognition methods based on the geometric features and motion status of dynamic obstacles are greatly affected by distance and scanning angle, and cannot meet the requirements of real traffic scene applications.FindingsFirst, based on the geometric features of dynamic obstacles, the obstacles are considered The echo pulse width feature is used to improve the accuracy of obstacle detection and tracking; second, the space-time feature vector is constructed based on the time dimension and space dimension information of the obstacle, and then the support vector machine method is used to realize the recognition of dynamic obstacles to improve the obstacle The accuracy of object recognition. Finally, the accuracy and effectiveness of the proposed method are verified by real vehicle tests.Originality/valueThe paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors. The accuracy and effectiveness of the proposed method are verified by real vehicle tests.


2020 ◽  
Vol 79 (43-44) ◽  
pp. 32731-32747
Author(s):  
Jinjia Peng ◽  
Yun Hao ◽  
Fengqiang Xu ◽  
Xianping Fu

2021 ◽  
Vol 11 (1) ◽  
pp. 339-348
Author(s):  
Piotr Bojarczak ◽  
Piotr Lesiak

Abstract The article uses images from Unmanned Aerial Vehicles (UAVs) for rail diagnostics. The main advantage of such a solution compared to traditional surveys performed with measuring vehicles is the elimination of decreased train traffic. The authors, in the study, limited themselves to the diagnosis of hazardous split defects in rails. An algorithm has been proposed to detect them with an efficiency rate of about 81% for defects not less than 6.9% of the rail head width. It uses the FCN-8 deep-learning network, implemented in the Tensorflow environment, to extract the rail head by image segmentation. Using this type of network for segmentation increases the resistance of the algorithm to changes in the recorded rail image brightness. This is of fundamental importance in the case of variable conditions for image recording by UAVs. The detection of these defects in the rail head is performed using an algorithm in the Python language and the OpenCV library. To locate the defect, it uses the contour of a separate rail head together with a rectangle circumscribed around it. The use of UAVs together with artificial intelligence to detect split defects is an important element of novelty presented in this work.


Sign in / Sign up

Export Citation Format

Share Document