Optical design of compact infrared imaging spectrometer

2018 ◽  
Vol 47 (4) ◽  
pp. 418001 ◽  
Author(s):  
袁立银 Yuan Liyin ◽  
谢佳楠 Xie Jianan ◽  
侯 佳 Hou Jia ◽  
吕 刚 Lv Gang ◽  
何志平 He Zhiping
2011 ◽  
Vol 40 (5) ◽  
pp. 673-678
Author(s):  
薛庆生 XUE Qing-sheng ◽  
林冠宇 LIN Guang-yu ◽  
宋克非 SONG Ke-fei

2017 ◽  
Vol 25 (19) ◽  
pp. 22440 ◽  
Author(s):  
Liyin Yuan ◽  
Zhiping He ◽  
Gang Lv ◽  
Yueming Wang ◽  
Chunlai Li ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon Plank ◽  
Francesco Marchese ◽  
Nicola Genzano ◽  
Michael Nolde ◽  
Sandro Martinis

AbstractSatellite-based Earth observation plays a key role for monitoring volcanoes, especially those which are located in remote areas and which very often are not observed by a terrestrial monitoring network. In our study we jointly analyzed data from thermal (Moderate Resolution Imaging Spectrometer MODIS and Visible Infrared Imaging Radiometer Suite VIIRS), optical (Operational Land Imager and Multispectral Instrument) and synthetic aperture radar (SAR) (Sentinel-1 and TerraSAR-X) satellite sensors to investigate the mid-October 2019 surtseyan eruption at Late’iki Volcano, located on the Tonga Volcanic Arc. During the eruption, the remains of an older volcanic island formed in 1995 collapsed and a new volcanic island, called New Late’iki was formed. After the 12 days long lasting eruption, we observed a rapid change of the island’s shape and size, and an erosion of this newly formed volcanic island, which was reclaimed by the ocean two months after the eruption ceased. This fast erosion of New Late’iki Island is in strong contrast to the over 25 years long survival of the volcanic island formed in 1995.


2008 ◽  
Vol 12 (4) ◽  
pp. 262-268 ◽  
Author(s):  
Jun-Ho Lee ◽  
Tae-Seong Jang ◽  
Ho-Soon Yang ◽  
Seung-Wu Rhee

2001 ◽  
Vol 67 (11) ◽  
pp. 5267-5272 ◽  
Author(s):  
Thomas H. Painter ◽  
Brian Duval ◽  
William H. Thomas ◽  
Maria Mendez ◽  
Sara Heintzelman ◽  
...  

ABSTRACT We describe spectral reflectance measurements of snow containing the snow alga Chlamydomonas nivalis and a model to retrieve snow algal concentrations from airborne imaging spectrometer data. Because cells of C. nivalis absorb at specific wavelengths in regions indicative of carotenoids (astaxanthin esters, lutein, β-carotene) and chlorophylls a and b, the spectral signature of snow containing C. nivalis is distinct from that of snow without algae. The spectral reflectance of snow containing C. nivalis is separable from that of snow without algae due to carotenoid absorption in the wavelength range from 0.4 to 0.58 μm and chlorophyll a and babsorption in the wavelength range from 0.6 to 0.7 μm. The integral of the scaled chlorophyll a and b absorption feature (I 0.68) varies with algal concentration (Ca ). Using the relationshipCa = 81019.2 I 0.68+ 845.2, we inverted Airborne Visible Infrared Imaging Spectrometer reflectance data collected in the Tioga Pass region of the Sierra Nevada in California to determine algal concentration. For the 5.5-km2 region imaged, the mean algal concentration was 1,306 cells ml−1, the standard deviation was 1,740 cells ml−1, and the coefficient of variation was 1.33. The retrieved spatial distribution was consistent with observations made in the field. From the spatial estimates of algal concentration, we calculated a total imaged algal biomass of 16.55 kg for the 0.495-km2 snow-covered area, which gave an areal biomass concentration of 0.033 g/m2.


2021 ◽  
Vol 2112 (1) ◽  
pp. 012007
Author(s):  
Chong Song ◽  
Yong Huang ◽  
Yangdong Yan ◽  
Dongsen Cui ◽  
Gang Wang ◽  
...  

Abstract An improved Offner imaging spectrometer was proposed based on the optical system characteristics of Offner imaging spectrometer, which can ensure perfect imaging quality in a wider annular region. The operating wavelength of the improved Offner imaging spectrometer ranges from 900nm to 1700nm, and the magnification is 1. Improved Offner imaging spectrometer can be obtained by changing the meniscus lens position and further optimizing the design. The results indicate that the improved Offner imaging spectrometer can effectively improve compactness and lightweight, and reduce the difficulty of optical adjustment, which is conducive to the stability of practical application.


Sign in / Sign up

Export Citation Format

Share Document