Modeling for tracking error of theodolite based on RBF neural network

2012 ◽  
Vol 20 (4) ◽  
pp. 818-825
Author(s):  
李淼 LI Miao ◽  
高慧斌 GAO Hui-bin
Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Santiago Rómoli ◽  
Mario Serrano ◽  
Francisco Rossomando ◽  
Jorge Vega ◽  
Oscar Ortiz ◽  
...  

The lack of online information on some bioprocess variables and the presence of model and parametric uncertainties pose significant challenges to the design of efficient closed-loop control strategies. To address this issue, this work proposes an online state estimator based on a Radial Basis Function (RBF) neural network that operates in closed loop together with a control law derived on a linear algebra-based design strategy. The proposed methodology is applied to a class of nonlinear systems with three types of uncertainties: (i) time-varying parameters, (ii) uncertain nonlinearities, and (iii) unmodeled dynamics. To reduce the effect of uncertainties on the bioreactor, some integrators of the tracking error are introduced, which in turn allow the derivation of the proper control actions. This new control scheme guarantees that all signals are uniformly and ultimately bounded, and the tracking error converges to small values. The effectiveness of the proposed approach is illustrated on the basis of simulated experiments on a fed-batch bioreactor, and its performance is compared with two controllers available in the literature.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1207
Author(s):  
Qisong Song ◽  
Shaobo Li ◽  
Qiang Bai ◽  
Jing Yang ◽  
Ansi Zhang ◽  
...  

Robot manipulator trajectory planning is one of the core robot technologies, and the design of controllers can improve the trajectory accuracy of manipulators. However, most of the controllers designed at this stage have not been able to effectively solve the nonlinearity and uncertainty problems of the high degree of freedom manipulators. In order to overcome these problems and improve the trajectory performance of the high degree of freedom manipulators, a manipulator trajectory planning method based on a radial basis function (RBF) neural network is proposed in this work. Firstly, a 6-DOF robot experimental platform was designed and built. Secondly, the overall manipulator trajectory planning framework was designed, which included manipulator kinematics and dynamics and a quintic polynomial interpolation algorithm. Then, an adaptive robust controller based on an RBF neural network was designed to deal with the nonlinearity and uncertainty problems, and Lyapunov theory was used to ensure the stability of the manipulator control system and the convergence of the tracking error. Finally, to test the method, a simulation and experiment were carried out. The simulation results showed that the proposed method improved the response and tracking performance to a certain extent, reduced the adjustment time and chattering, and ensured the smooth operation of the manipulator in the course of trajectory planning. The experimental results verified the effectiveness and feasibility of the method proposed in this paper.


2011 ◽  
Vol 383-390 ◽  
pp. 631-637 ◽  
Author(s):  
Ming Hui Zheng ◽  
Qiang Zhan ◽  
Jin Kun Liu ◽  
Yao Cai

This paper deals with trajectory tracking problem of a spherical mobile robot, BHQ-1. First, a desired velocity is obtained by proposing a PD controller based on the kinematics. Then a PD controller with an RBF (Radial Basis Function) neural network is proposed based on the desired velocity and the inexact dynamics. The weights of the RBF network are designed with an adaptive rule based on the tracking error, and hence the network can compensate the uncertainties of the dynamics more effectively. Stability is presented via Lyapunov Theory and simulation results are provided to illustrate the tracking performance.


Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 196
Author(s):  
Yiting Kang ◽  
Biao Xue ◽  
Riya Zeng

Wheeled mobile robots are widely implemented in the field environment where slipping and skidding may often occur. This paper presents a self-adaptive path tracking control framework based on a radial basis function (RBF) neural network to overcome slippage disturbances. Both kinematic and dynamic models of a wheeled robot with skid-steer characteristics are established with position, orientation, and equivalent tracking error definitions. A dual-loop control framework is proposed, and kinematic and dynamic models are integrated in the inner and outer loops, respectively. An RBF neutral network is employed for yaw rate control to realize adaptability to longitudinal slippage. Simulations employing the proposed control framework are performed to track snaking and a DLC reference path with slip ratio variations. The results suggest that the proposed control framework yields much lower position and orientation errors compared with those of a PID and a single neuron network (SNN) controller. It also exhibits prior anti-disturbance performance and adaptability to longitudinal slippage. The proposed control framework could thus be employed for autonomous mobile robots working on complex terrain.


Author(s):  
Gang Luo ◽  
Bingxin Ma ◽  
Yongfu Wang

In this paper, an observer-based adaptive neural network controller is developed for the Steer-by-Wire (SbW) system of automated vehicles with uncertain nonlinearity and unmeasured state. An observer is introduced to estimate the angular velocity of the front wheels, so the hardware cost and the complexity of mechanical structure and electronic circuits are reduced. Then, an observer-based adaptive neural network controller is proposed for the SbW system to achieve excellent steering precision. A radial basis function (RBF) neural network is used to model the uncertain nonlinearity, which mainly includes self-aligning torque and unknown friction torque with strong nonlinearity. The adaptive law of the RBF neural network designed by fuzzy basis functions rather than by its filtering is derived by Lyapunov stability theory and the Strictly Positive Real (SPR) condition. The tracking error and the observation error can be guaranteed to converge asymptotically to zero. Simulation and experimental results for two paths highlight the effectiveness of the proposed control algorithm.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Mao-long Lv ◽  
Xiu-xia Sun ◽  
Shu-guang Liu ◽  
Dong Wang

In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is derived; the unknown nonlinear model functions are approximated by means of the RBF neural network. Also, an adaption strategy is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the assumption that system functions must be known.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Zhang ◽  
Wenbo Xu ◽  
Wenru Lu

This study aimed to improve the position tracking accuracy of the single joint of the manipulator when the manipulator model information is uncertain. The study is based on the theory of fractional calculus, radial basis function (RBF) neural network control, and iterative sliding mode control, and the RBF neural network fractional-order iterative sliding mode control strategy is proposed. First, the stability analysis of the proposed control strategy is carried out through the Lyapunov function. Second, taking the two-joint manipulator as an example, simulation comparison and analysis are carried out with iterative sliding mode control strategy, fractional-order iterative sliding mode reaching law control strategy, and fractional-order iterative sliding mode surface control strategy. Finally, through simulation experiments, the results show that the RBF neural network fractional-order iterative sliding mode control strategy can effectively improve the joints’ tracking and control accuracy, reduce the position tracking error, and effectively suppress the chattering caused by the sliding mode control. It is proved that the proposed control strategy can ensure high-precision position tracking when the information of the manipulator model is uncertain.


Author(s):  
Zakwan Skaf

A new design of a fault tolerant control (FTC)-based an adaptive, fixed-structure proportional-integral (PI) controller with constraints on the state vector for nonlinear discrete-time system subject to stochastic non-Gaussian disturbance is studied. The objective of the reliable control algorithm scheme is to design a control signal such that the actual probability density function (PDF) of the system is made as close as possible to a desired PDF, and make the tracking performance converge to zero, not only when all components are functional but also in case of admissible faults. A Linear Matrix Inequality (LMI)-based FTC method is presented to ensure that the fault can be estimated and compensated for. A radial basis function (RBF) neural network is used to approximate the output PDF of the system. Thus, the aim of the output PDF control will be a RBF weight control with an adaptive tuning of the basis function parameters. The key issue here is to divide the control horizon into a number of equal time intervals called batches. Within each interval, there are a fixed number of sample points. The design procedure is divided into two main algorithms, within each batch, and between any two adjacent batches. A P-type Iterative Learning Control (ILC) law is employed to tune the parameters of the RBF neural network so that the PDF tracking error decreases along with the batches. Sufficient conditions for the proposed fault tolerance are expressed as LMIs. An analysis of the ILC convergence is carried out. Finally, the effectiveness of the proposed method is demonstrated with an illustrated example.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Cang He ◽  
Fang Zhang ◽  
Jinhui Jiang

In this paper, nonlinear dynamical equations of the flexible manipulator with a lumped payload at the free end are derived from Hamilton's principle. The obtained model consists of both distributed parameters and lumped parameters, namely, partial differential equations (PDEs) governing the flexible motion of links and boundary conditions in the form of ordinary differential equations (ODEs). Considering the great nonlinear approximation ability of the radial basis function (RBF) neural network, we propose a combined control algorithm that includes two parts: one is a boundary controller to track the desired joint positions and suppress the vibration of flexible links; another is a RBF neural network designed to compensate for the parametric uncertainties. The iteration criterion of the RBF neural network weight matrix is derived from the extended Lyapunov function. Stabilization analysis is further carried out theoretically via LaSalle’s invariance principle. Finally, the results of the numerical simulation verify that the proposed control law can realize the asymptotic convergence of tracking error and suppression of the elastic vibration as well.


Author(s):  
Zeyu Li ◽  
Weidong Liu ◽  
Le Li ◽  
Wenbo Zhang ◽  
Liwei Guo

In the underwater docking process, the oscillation on AUV velocity brings extra challenge on AUV path following. A Q-learning based Sliding Mode Control (SMC) method to increase the path following performances is proposed. Firstly, AUV guidance law is designed to reduce the path following error. Heading and depth sliding mode controllers are designed to track the guidance law. Then, according to AUV velocity, tracking error and the first derivative, the control parameters of SMC are optimized via Q-learning network. RBF neural network is built to accelerate the offline learning rate. Finally, numerical simulations are made to investigate the characteristics of the present method. Comparisons are made between the trained Q-learning based SMC and the traditional SMC. The results show the effectiveness of the present method.


Sign in / Sign up

Export Citation Format

Share Document