scholarly journals Removal of Exogenous Materials from the Outer Portion of Frozen Cores to Investigate the Ancient Biological Communities Harbored Inside

Author(s):  
Robyn A. Barbato ◽  
Natàlia Garcia-Reyero ◽  
Karen Foley ◽  
Robert Jones ◽  
Zoe Courville ◽  
...  
2000 ◽  
Vol 31 (4-5) ◽  
pp. 411-422 ◽  
Author(s):  
Gísli Már Gíslason ◽  
Jón S. Ólafsson ◽  
Hákon Adalsteinsson

The characteristics of stream and river ecosystems in arctic and alpine areas are determined mainly by the relative contribution of glacial meltwater, snowmelt, rainfall and groundwater. Each source generates a particular seasonal hydrological signature, affecting physical and chemical properties, and hence biological communities. The relative contribution of each source is sensitive to climate change. The study was concentrated on the glacial River W-Jökulsá and some non-glacial rivers in the central highlands of Iceland. The water in the glacial river was entirely glacial meltwater at the glacier margin, but the glacial contribution was about 20% 40 km downstream. However, its tributaries and non-glacial reference rivers were mainly springfed. The invertebrate fauna was confined to Chironomidae of the genus Diamesa close to the glacier, but other taxa (species and groups of species) occupied the river further downstream, where their diversity was close to that found in the reference rivers.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 481
Author(s):  
Sarah A. Morley ◽  
Linda D. Rhodes ◽  
Anne E. Baxter ◽  
Giles W. Goetz ◽  
Abigail H. Wells ◽  
...  

All cities face complex challenges managing urban stormwater while also protecting urban water bodies. Green stormwater infrastructure and process-based restoration offer alternative strategies that prioritize watershed connectivity. We report on a new urban floodplain restoration technique being tested in the City of Seattle, USA: an engineered hyporheic zone. The hyporheic zone has long been an overlooked component in floodplain restoration. Yet this subsurface area offers enormous potential for stormwater amelioration and is a critical component of healthy streams. From 2014 to 2017, we measured hyporheic temperature, nutrients, and microbial and invertebrate communities at three paired stream reaches with and without hyporheic restoration. At two of the three pairs, water temperature was significantly lower at the restored reach, while dissolved organic carbon and microbial metabolism were higher. Hyporheic invertebrate density and taxa richness were significantly higher across all three restored reaches. These are some of the first quantified responses of hyporheic biological communities to restoration. Our results complement earlier reports of enhanced hydrologic and chemical functioning of the engineered hyporheic zone. Together, this research demonstrates that incorporation of hyporheic design elements in floodplain restoration can enhance temperature moderation, habitat diversity, contaminant filtration, and the biological health of urban streams.


2017 ◽  
Vol 25 (4) ◽  
pp. 481-491 ◽  
Author(s):  
Klaudia Kosek ◽  
Katarzyna Jankowska ◽  
Żaneta Polkowska

Microbes are omnipresent and diverse members of all biological communities. In marine and freshwater ecosystems, microorganisms form the base of the food chain supporting higher trophic levels. Even though microbes are generally thought to live in warm regions of Earth, many of them develop in cold climates. Polar regions remain relatively protected from widespread anthropogenic disturbances, which is a consequence of thier remoteness and extreme climate conditions. For a long time these regions were considered to be free from chemical contamination until scientists discovered a presence of pollutants there. Chemical contamination may induce serious disorders in the integrity of polar ecosystems influencing the growth of bacterial communities. Xenobiotics including persistent organic pollutants are transported thousands of kilometers by the air and ocean currents, and they are deposed in high-latitude regions and accumulate in all elements of the environment including bacterial communities. It is important to determine their concentration levels in bacterial cells to assess the possibility of contaminants becoming transferred to higher trophic levels; however, some species of bacteria are capable of metabolizing xenobiotics, which makes them less toxic or even removes them from the environment.


2011 ◽  
Vol 284 (16-17) ◽  
pp. 4078-4081 ◽  
Author(s):  
Ming Tian ◽  
Ping Lu ◽  
Li Chen ◽  
Chao Lv ◽  
Deming Liu

1986 ◽  
Vol 48 (1) ◽  
pp. 59-75 ◽  
Author(s):  
Grant G. Thompson ◽  
W. Michael Booty ◽  
William J. Liss ◽  
Charles E. Warren

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Dolbeth ◽  
O. Babe ◽  
D. A. Costa ◽  
A. P. Mucha ◽  
P. G. Cardoso ◽  
...  

AbstractMarine heatwaves are increasing worldwide, with several negative impacts on biological communities and ecosystems. This 24-day study tested heatwaves' effect with distinct duration and recovery periods on benthic estuarine communities' diversity and contribution to ecosystem functioning experimentally. The communities were obtained from a temperate estuary, usually subjected to high daily thermal amplitudes. Our goal was to understand the communities' response to the thermal change, including the community descriptors and behavioural changes expected during heat extremes. We measured community composition and structural changes and the bioturbation process and nutrient release as ecosystem functioning measurements. Overall, our findings highlight the potential tolerance of studied estuarine species to the temperature ranges tested in the study, as community composition and structure were similar, independently of the warming effect. We detected a slight trend for bioturbation and nutrient release increase in the communities under warming, yet these responses were not consistent with the heatwaves exposure duration. Overall, we conclude on the complexity of estuarine communities’ contribution to functioning under warming, and the importance of scalable experiments with benthic organisms' responses to climate variability, accommodating longer time scales and replication. Such an approach would set more efficient expectations towards climate change mitigation or adaptation in temperate estuarine ecosystems.


2014 ◽  
Vol 76 (4) ◽  
pp. 579-594 ◽  
Author(s):  
Griselda Chaparro ◽  
María Soledad Fontanarrosa ◽  
María Romina Schiaffino ◽  
Paula de Tezanos Pinto ◽  
Inés O’Farrell

Sign in / Sign up

Export Citation Format

Share Document