scholarly journals Benthic estuarine communities' contribution to bioturbation under the experimental effect of marine heatwaves

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Dolbeth ◽  
O. Babe ◽  
D. A. Costa ◽  
A. P. Mucha ◽  
P. G. Cardoso ◽  
...  

AbstractMarine heatwaves are increasing worldwide, with several negative impacts on biological communities and ecosystems. This 24-day study tested heatwaves' effect with distinct duration and recovery periods on benthic estuarine communities' diversity and contribution to ecosystem functioning experimentally. The communities were obtained from a temperate estuary, usually subjected to high daily thermal amplitudes. Our goal was to understand the communities' response to the thermal change, including the community descriptors and behavioural changes expected during heat extremes. We measured community composition and structural changes and the bioturbation process and nutrient release as ecosystem functioning measurements. Overall, our findings highlight the potential tolerance of studied estuarine species to the temperature ranges tested in the study, as community composition and structure were similar, independently of the warming effect. We detected a slight trend for bioturbation and nutrient release increase in the communities under warming, yet these responses were not consistent with the heatwaves exposure duration. Overall, we conclude on the complexity of estuarine communities’ contribution to functioning under warming, and the importance of scalable experiments with benthic organisms' responses to climate variability, accommodating longer time scales and replication. Such an approach would set more efficient expectations towards climate change mitigation or adaptation in temperate estuarine ecosystems.

2019 ◽  
Vol 286 (1901) ◽  
pp. 20190287 ◽  
Author(s):  
Matthias S. Thomsen ◽  
Jasmin A. Godbold ◽  
Clement Garcia ◽  
Stefan G. Bolam ◽  
Ruth Parker ◽  
...  

There is now strong evidence that ecosystem properties are influenced by alterations in biodiversity. The consensus that has emerged from over two decades of research is that the form of the biodiversity–functioning relationship follows a saturating curve. However, the foundation from which these conclusions are drawn mostly stems from empirical investigations that have not accounted for post-extinction changes in community composition and structure, or how surviving species respond to new circumstances and modify their contribution to functioning. Here, we use marine sediment-dwelling invertebrate communities to experimentally assess whether post-extinction compensatory mechanisms (simulated by increasing species biomass) have the potential to alter biodiversity–ecosystem function relations. Consistent with recent numerical simulations, we find that the form of the biodiversity–function curve is dependent on whether or not compensatory responses are present, the cause and extent of extinction, and species density. When species losses are combined with the compensatory responses of surviving species, both community composition, dominance structure, and the pool and relative expression of functionally important traits change and affect species interactions and behaviour. These observations emphasize the importance of post-extinction community composition in determining the stability of ecosystem functioning following extinction. Our results caution against the use of the generalized biodiversity–function curve when generating probabilistic estimates of post-extinction ecosystem properties for practical application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ben R. Cairns ◽  
Benjamin Jevans ◽  
Atchariya Chanpong ◽  
Dale Moulding ◽  
Conor J. McCann

AbstractNeuronal nitric oxide synthase (nNOS) neurons play a fundamental role in inhibitory neurotransmission, within the enteric nervous system (ENS), and in the establishment of gut motility patterns. Clinically, loss or disruption of nNOS neurons has been shown in a range of enteric neuropathies. However, the effects of nNOS loss on the composition and structure of the ENS remain poorly understood. The aim of this study was to assess the structural and transcriptional consequences of loss of nNOS neurons within the murine ENS. Expression analysis demonstrated compensatory transcriptional upregulation of pan neuronal and inhibitory neuronal subtype targets within the Nos1−/− colon, compared to control C57BL/6J mice. Conventional confocal imaging; combined with novel machine learning approaches, and automated computational analysis, revealed increased interconnectivity within the Nos1−/− ENS, compared to age-matched control mice, with increases in network density, neural projections and neuronal branching. These findings provide the first direct evidence of structural and molecular remodelling of the ENS, upon loss of nNOS signalling. Further, we demonstrate the utility of machine learning approaches, and automated computational image analysis, in revealing previously undetected; yet potentially clinically relevant, changes in ENS structure which could provide improved understanding of pathological mechanisms across a host of enteric neuropathies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. A. Forero-Sossa ◽  
J. D. Salazar-Martínez ◽  
A. L. Giraldo-Betancur ◽  
B. Segura-Giraldo ◽  
E. Restrepo-Parra

AbstractBiogenic hydroxyapatite (BHAp) is a widely used material in the biomedical area due to its similarities with the bone tissue mineral phase. Several works have been spotlighted on the thermal behavior of bone. However, little research has focused on determining the influence of calcination temperature in the physicochemical and bioactive properties of BHAp. In this work, a study of the physicochemical properties’ changes and bioactive response of BHAp produced from porcine femur bones using calcination temperatures between 900 to 1200 °C was conducted. The samples’ structural, morphological, and compositional changes were determined using XRD, SEM, and FTIR techniques. XRD results identified three temperature ranges, in which there are structural changes in BHAp samples and the presence of additional phases. Moreover, FTIR results corroborated that B-type substitution is promoted by increasing the heat treatment temperature. Likewise, samples were immersed in a simulated biological fluid (SBF), following the methodology described by Kokubo and using ISO 23317:2014 standard, for 3 and 7 days. FTIR and SEM results determined that the highest reaction velocity was reached for samples above 1000 °C, due to intensity increasing of phosphate and carbonate bands and bone-like apatite morphologies, compared to other temperatures evaluated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Domínguez ◽  
Manuel Aira ◽  
Keith A. Crandall ◽  
Marcos Pérez-Losada

AbstractWastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful at processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by its disposal. Here, we utilized 16S and ITS rRNA high-throughput sequencing to characterize bacterial and fungal community composition and structure during the gut- and cast-associated processes (GAP and CAP, respectively) of vermicomposting of sewage sludge. Bacterial and fungal communities of earthworm casts were mainly composed of microbial taxa not found in the sewage sludge; thus most of the bacterial (96%) and fungal (91%) taxa in the sewage sludge were eliminated during vermicomposting, mainly through the GAP. Upon completion of GAP and during CAP, modified microbial communities undergo a succession process leading to more diverse microbiotas than those found in sewage sludge. Consequently, bacterial and fungal community composition changed significantly during vermicomposting. Vermicomposting of sewage resulted in a stable and rich microbial community with potential biostimulant properties that may aid plant growth. Our results support the use of vermicompost derived from sewage sludge for sustainable agricultural practices, if heavy metals or other pollutants are under legislation limits or adequately treated.


2014 ◽  
Vol 955-959 ◽  
pp. 3474-3478
Author(s):  
Tie Jun Sun

Experiment was executed to plant Bromus inermis artificially in the degraded ecosystem, and study effect of grass planting on vegetation restoration. The results indicated that natural vegetation restored rapidly in the degraded ecosystem in two years after grass planted. But species diversity changed little in the early period of vegetation restoration, while vegetation biomass, coverage and anti-interference improved quickly. In addition, species number and important value of perennial grasses increased while those of annual grasses decreased. Then community composition with annual plants mainly changed gradually into that with perennial plants mainly after Bromus inermis planted. However, overground biomass and coverage of restored vegetation and dominance of Bromus inermis planted decreased after vegetation cut once a year. And species diversity and important value of annual grasses increased. Thus it could be good for uniformity of species distribution and stability of community composition and structure to develop.


Author(s):  
Martin Solan ◽  
Ellie R. Ward ◽  
Christina L. Wood ◽  
Adam J. Reed ◽  
Laura J. Grange ◽  
...  

Arctic marine ecosystems are undergoing rapid correction in response to multiple expressions of climate change, but the consequences of altered biodiversity for the sequestration, transformation and storage of nutrients are poorly constrained. Here, we determine the bioturbation activity of sediment-dwelling invertebrate communities over two consecutive summers that contrasted in sea-ice extent along a transect intersecting the polar front. We find a clear separation in community composition at the polar front that marks a transition in the type and amount of bioturbation activity, and associated nutrient concentrations, sufficient to distinguish a southern high from a northern low. While patterns in community structure reflect proximity to arctic versus boreal conditions, our observations strongly suggest that faunal activity is moderated by seasonal variations in sea ice extent that influence food supply to the benthos. Our observations help visualize how a climate-driven reorganization of the Barents Sea benthic ecosystem may be expressed, and emphasize the rapidity with which an entire region could experience a functional transformation. As strong benthic-pelagic coupling is typical across most parts of the Arctic shelf, the response of these ecosystems to a changing climate will have important ramifications for ecosystem functioning and the trophic structure of the entire food web. This article is part of the theme issue ‘The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


2020 ◽  
Vol 854 ◽  
pp. 151-157 ◽  
Author(s):  
Nikolay M. Barbin ◽  
Vasiliy P. Dan ◽  
Dmitriy I. Terentyev ◽  
Sergey G. Alexeev

The structural changes of condensed fullerenes C60 and C28 at a temperature increase from 200 K to 2000 K have been studied by computational methods using the TERRA software for carbon-argon systems. The processes of destruction of fullerenes C60 and C28 molecules are presented, and the temperature ranges of their thermal stability are determined: up to 1000 K and up to 400 K, respectively. The following thermophysical parameters of the C60-Ar and C28-Ar systems are considered: specific volume, entropy, total enthalpy, total internal energy, equilibrium specific heat, molar mass of the gas phase, gas constant, and mass fraction of the condensed phase. A comparative analysis of their changes with increasing temperature is carried out. The results obtained in the course of thermodynamic modeling are similar to the results of a full-scale experiment conducted under similar conditions. In the future, the obtained data can be used to determine the explosive and fire-hazardous properties of fullerenes as a dispersed solid.


Sign in / Sign up

Export Citation Format

Share Document