scholarly journals Specific and Accurate Detection of the Citrus Greening Pathogen Candidatus liberibacter spp. Using Conventional PCR on Citrus Leaf Tissue Samples

Author(s):  
Huan Chen ◽  
Ian Arthur Palmer ◽  
Jian Chen ◽  
Ming Chang ◽  
Stephen L. Thompson ◽  
...  
2010 ◽  
Vol 100 (9) ◽  
pp. 949-958 ◽  
Author(s):  
Svetlana Y. Folimonova ◽  
Diann S. Achor

Citrus greening (Huanglongbing [HLB]) is one of the most destructive diseases of citrus worldwide. The causal agent of HLB in Florida is thought to be ‘Candidatus Liberibacter asiaticus’. Understanding of the early events in HLB infection is critical for the development of effective measures to control the disease. In this work, we conducted cytopathological studies by following the development of the disease in citrus trees graft inoculated with ‘Ca. L. asiaticus’-containing material under greenhouse conditions to examine the correlation between ultrastructural changes and symptom production, with the main objective of characterizing the early events of infection. Based on our observations, one of the first degenerative changes induced upon invasion of the pathogen appears to be swelling of middle lamella between cell walls surrounding sieve elements. This anatomical aberration was often observed in samples from newly growing flushes in inoculated sweet orange and grapefruit trees at the early “presymptomatic” stage of HLB infection. Development of symptoms and their progression correlated with an increasing degree of microscopic aberrations. Remarkably, the ability to observe the bacterium in the infected tissue also correlated with the degree of the disease progression. Large numbers of bacterial cells were found in phloem sieve tubes in tissue samples from presymptomatic young flushes. In contrast, we did not observe the bacteria in highly symptomatic leaf samples, suggesting a possibility that, at more advanced stages of the disease, a major proportion of ‘Ca. L. asiaticus’ is present in a nonviable state. We trust that observations reported here advance our understanding of how ‘Ca. L. asiaticus’ causes disease. Furthermore, they may be an important aid in answering a question: when and where within an infected tree the tissue serves as a better inoculum source for acquisition and transmission of the bacterium by its psyllid vector.


2014 ◽  
Vol 15 (4) ◽  
pp. 184-188 ◽  
Author(s):  
Olufemi J. Alabi ◽  
Madhurababu Kunta ◽  
Jon Dale ◽  
Mamoudou Sétamou

Huanglongbing (HLB) disease, associated with ‘Candidatus Liberibacter asiaticus’ (CLas), is primarily spread via infected citrus nursery trees and by infective Asian citrus psyllid, the insect vector. Recently, the Texas Department of Agriculture initiated regulations requiring commercial and retail citrus nurseries in Texas to transition from traditional open-field to enclosed facilities with insect-resistant screens to mitigate the risk of nurseries serving as sources of CLas. Although several nursery production facilities have adopted this regulation, non-enclosed nurseries persist and pose a significant threat to the citrus industry as potential sources of CLas. A systematic survey for HLB was embarked on in a semi-open nursery facility in South Texas in April 2014. Leaf tissue samples taken from 94 trees representing 5% of the total number of potted trees in the nursery were tested for CLas by quantitative and conventional PCR assays. Of 94 trees tested, 3.2% (3 trees) were positive for CLas by both assays. The presence of CLas in the PCR-positive samples was confirmed by multi-locus sequence analyses. The results represent the first report of HLB in a nursery facility in Texas, and underscore the need for more intensive surveillance for HLB in citrus nursery stock as an integral component of HLB mitigation efforts in Texas. Accepted for publication 27 August 2014. Published 15 December 2014.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Sheng-Ren Sun ◽  
Kashif Ahmad ◽  
Xiao-Bin Wu ◽  
Jian-Sheng Chen ◽  
Hua-Ying Fu ◽  
...  

Sugarcane-infecting badnaviruses (sugarcane bacilliform viruses, SCBVs) represent a genetically heterogeneous species complex, posing a serious threat to the yield and quality of sugarcane in all major producing regions. SCBVs are commonly transmitted across regions by the exchange of sugarcane germplasm. In this study, we develop two quick, sensitive, and reliable protocols for real-time quantitative PCR (qPCR) of Sugarcane bacilliform MO virus (SCBMOV) and Sugarcane bacilliform IM virus (SCBIMV) using two sets of TaqMan probes and primers targeting the reverse transcriptase/ribonuclease H (RT/RNase H) region. The two assays had a detection limit of 100 copies of plasmid DNA and were 100 times more sensitive than conventional PCR. High specificity of the two assays was observed with respect to SCBIMV and SCBMOV. A total of 176 sugarcane leaf tissue samples from Fujian and Yunnan provinces were collected and analyzed in parallel by conventional PCR, SCBIMV-qPCR, and SCBMOV-qPCR. The SCBIMV-qPCR and SCBMOV-qPCR assays indicated that 50% (88/176) and 47% (83/176) samples tested positive, respectively, whereas only 29% (51/176) tested positive with conventional PCR with the primer pairs SCBV-F and SCBV-R. We demonstrate for the first time that SCBIMV and SCBMOV occur in China and reveal coinfection of both Badnavirus species in 29% (51/176) of tested leaf samples. Our findings supply sensitive and reliable qPCR assays for the detection and quantitation of SCBV in sugarcane quarantine programs.


Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1118-1126 ◽  
Author(s):  
Mamoudou Sétamou ◽  
Olufemi J. Alabi ◽  
Madhurababu Kunta ◽  
Jon Dale ◽  
John V. da Graça

Huanglongbing (HLB, citrus greening disease) in the major citrus-producing states of the United States is associated with Candidatus Liberibacter asiaticus (CLas), which is vectored by the Asian citrus psyllid (ACP). Surveys were conducted in Texas from 2007 to 2017 to assess the prevalence and titer of CLas in ACPs and citrus trees. ACP and citrus leaf tissue samples were collected from suspect trees in residential areas and commercial groves (orchards) and assayed for CLas by quantitative PCR. CLas detection in ACPs (2011) preceded that of citrus trees (2012) by several months. Annual incidences of CLas-positive ACPs and leaf tissue followed an exponential growth pattern over the survey period, varying from 0.03 to 28.7% in ACPs and 0.6 to 36.5% in citrus trees. There was a significant and positive relationship between the monthly incidences of CLas-positive ACP and leaf tissue samples. The proportion of HLB detection sites also increased with time, reaching 26 and 40% of commercial groves and residential sites, respectively, by 2017. Seasonal variations were observed in the incidences of CLas-positive ACPs and citrus trees such that significantly more CLas-positive ACPs and trees were recorded during the fall and winter of a given year relative to the hot summer. A temporal analysis of the class distribution of cycle threshold values revealed a trend of increased bacterial accumulation in ACPs and trees over time, with the trend more pronounced for the former than the latter host type. These findings provide a comprehensive insight into the ongoing CLas/HLB epidemic in Texas, with potential lessons for California and other citrus-producing areas where the disease is not yet established.


Plant Disease ◽  
2021 ◽  
Author(s):  
Gardenia Orellana ◽  
Alexander V Karasev

Coleus scutellarioides (syn. Coleus blumei) is a widely grown evergreen ornamental plant valued for its highly decorative variegated leaves. Six viroids, named Coleus blumei viroid 1 to 6 (CbVd-1 to -6) have been identified in coleus plants in many countries of the world (Nie and Singh 2017), including Canada (Smith et al. 2018). However there have been no reports of Coleus blumei viroids occurring in the U.S.A. (Nie and Singh 2017). In April 2021, leaf tissue samples from 27 cultivars of C. blumei, one plant of each, were submitted to the University of Idaho laboratory from a commercial nursery located in Oregon to screen for the presence of viroids. The sampled plants were selected randomly and no symptoms were apparent in any of the samples. Total nucleic acids were extracted from each sample (Dellaporta et al. 1983) and used in reverse-transcription (RT)-PCR tests (Jiang et al. 2011) for the CbVd-1 and CbVd-5 with the universal primer pair CbVds-P1/P2, which amplifies the complete genome of all members in the genus Coleviroid (Jiang et al. 2011), and two additional primer pairs, CbVd1-F1/R1 and CbVd5-F1/R1, specific for CbVd-1 and CbVd-5, respectively (Smith et al. 2018). Five C. blumei plants (cvs Fire Mountain, Lovebird, Smokey Rose, Marrakesh, and Nutmeg) were positive for a coleviroid based on the observation of the single 250-nt band in the RT-PCR test with CbVds-P1/P2 primers. Two of these CbVd-1 positive plants (cvs Lovebird and Nutmeg) were also positive for CbVd-1 based on the presence of a single 150-nt band in the RT-PCR assay with CbVd1-F1/R1 primers. One plant (cv Jigsaw) was positive for CbVd-1, i.e. showing the 150-nt band in RT-PCR with CbVd1-F1/R1 primers, but did not show the ca. 250-bp band in RT-PCR with primers CbVds-P1/P2. None of the tested plants were positive for CbVd-5, either with the specific, or universal primers. All coleviroid- and CbVd-1-specific PCR products were sequenced directly using the Sanger methodology, and revealed whole genomes for five isolates of CbVd-1 from Oregon, U.S.A. The genomes of the five CbVd-1 isolates displayed 96.9-100% identity among each other and 96.0-100% identity to the CbVd-1 sequences available in GenBank. Because the sequences from cvs Lovebird, Marrakesh, and Nutmeg, were found 100% identical, one sequence was deposited in GenBank (MZ326145). Two other sequences, from cvs Fire Mountain and Smokey Rose, were deposited in the GenBank under accession numbers MZ326144 and MZ326146, respectively. To the best of our knowledge, this is the first report of CbVd-1 in the United States.


2021 ◽  
Author(s):  
Frank Dunemann ◽  
Christoph Böttcher

Abstract Polyacetylenes (PAs) are a large group of bioactive phytochemicals, which are primarily produced by higher plants of the families Apiaceae and Araliaceae. Especially aliphatic C17-polyacetylenes of the falcarinol-type such as falcarinol (FaOH) and falcarindiol (FaDOH) are known for their numerous positive effects on human health. In this study we investigate the potential of carrot hairy root cultures for production of PAs. Three individual plants of seven differently coloured carrot cultivars were used for the development of hairy root cultures by transformation of root discs with the wild-type Rhizobium rhizogenes strain 15834. A total of 51 individual hairy root (HR) lines were obtained and quantitatively analysed together with root, petiole and leaf tissue samples for FaOH and FaDOH. Among the five tissues sampled from the donor plants, root periderm samples generally exhibited the highest PA levels with FaDOH as prevailing PA and large differences between cultivars. In comparison to periderm tissue, FaOH levels were highly increased in HR lines of all cultivars. In contrast, FaDOH levels were not significantly altered. Considering the low to moderate PA concentration in root and leaf tissues of the orange cultivars there was an up to more than 10-fold increase of the FaOH concentration in HRs of these genotypes. Within this study a reproducible method for Rrhi-mediated transformation of carrot root discs was applied which provides an efficient tool to assess the function of candidate genes involved in the biosynthesis of key PAs in carrot but might be used in future also for the large-scale production of falcarinol-type PAs.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 262
Author(s):  
Nabil Killiny ◽  
Pedro Gonzalez-Blanco ◽  
Yulica Santos-Ortega ◽  
Fuad Al-Rimawi ◽  
Amit Levy ◽  
...  

Huánglóngbìng (HLB), citrus greening, is one of the most destructive diseases of citrus plants worldwide. In North America, HLB is caused by the phloem-limited bacterium Candidatus Liberibacter asiaticus and is transmitted by the Asian citrus psyllid, Diaphorina citri. No cure exists at present, and the use of antibiotics for the control of HLB has gained interest due to the significant losses to the citrus industry. Because of unsatisfactory results when using foliar applications of antibiotics, concerns were raised regarding the uptake and translocation of these materials within trees. We, therefore, investigated a method that allows us to study the movement of antibiotic materials in citrus plants. Herein, we utilized a fluorescence-labeled penicillin, BOCILLIN™ FL-Penicillin (FL-penicillin), to study the uptake and translocation of penicillin in citrus plants. FL-penicillin was applied by puncture to the stem of young citrus seedlings and was traced by using fluorescence microscopy. After application, we detected FL-penicillin in the leaves and in the stem xylem and phloem tissues above and below the application site in both intact and partially bark-girdled citrus seedlings, indicating that it is easily taken up and transported through the plant vascular system. In addition, we detected FL-penicillin in the gut of D. citri, which were allowed to feed on the treated plants, suggesting translocation of this molecule into the vascular tissue. We propose that the use of fluorescent-labeled molecules could be an effective tool for understanding the uptake and translocation of antibiotics and other macromolecules in plants and insects.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 563-569 ◽  
Author(s):  
L. D. Maccarone ◽  
M. J. Barbetti ◽  
K. Sivasithamparam ◽  
R. A. C. Jones

Lettuce plants showing symptoms of lettuce big-vein disease were collected from fields in the Perth Metropolitan region of southwest Australia. When root extracts from each plant were tested by polymerase chain reaction (PCR) using primers specific to the rDNA internal transcribed spacer (ITS) region of Olpidium brassicae and O. virulentus, only O. virulentus was detected in each of them. The nucleotide sequences of the complete rDNA ITS regions of isolates from five of the root samples and 10 isolates of O. virulentus from Europe and Japan showed 97.9 to 100% identities. However, with the six O. brassicae isolates, their identities were only 76.9 to 79.4%. On phylogenetic analysis of the complete rDNA-ITS region sequences of the five Australian isolates and 10 others, the Australian isolates fitted within two clades of O. virulentus (I and II), and within clade I into two of its four subclades (Ia and Id). Japanese isolates had greatest sequence diversity fitting into both clades and into all of clade I subclades except Ib, while European isolates were restricted to subclades Ib and Id. When the partial rDNA-ITS region sequences of two additional southwest Australian isolates, four from Europe, and four from the Americas were included in the analyses, the Australian isolates were within O. virulentus subclades Ia and Id, the European isolates within subclade Ic, and the American isolates within subclades Ia and Ib. These findings suggest that there may have been at least three separate introductions of O. virulentus into the isolated Australian continent since plant cultivation was introduced following its colonization by Europeans. They also have implications regarding numbers of different introductions to other isolated regions. Lettuce big-vein associated virus and Mirafiori lettuce big-vein virus were both detected when symptomatic lettuce leaf tissue samples corresponding to the root samples from southwest Australia were tested using virus-specific primers in reverse transcription–PCR, so presence of both viruses was associated with O. virulentus occurrence.


Sign in / Sign up

Export Citation Format

Share Document