Isolation, Culture, and Adipogenic Induction of Neural Crest Original Adipose-Derived Stem Cells from Periaortic Adipose Tissue

Author(s):  
Yiding Qi ◽  
Xiang Miao ◽  
Lian Xu ◽  
Mengxia Fu ◽  
Shi Peng ◽  
...  
Biomaterials ◽  
2007 ◽  
Vol 28 (26) ◽  
pp. 3834-3842 ◽  
Author(s):  
Lauren Flynn ◽  
Glenn D. Prestwich ◽  
John L. Semple ◽  
Kimberly A. Woodhouse

Cytotherapy ◽  
2015 ◽  
Vol 17 (6) ◽  
pp. S37
Author(s):  
Cécile Coste ◽  
Virginie Neirinckx ◽  
Anil Sharma ◽  
Bernard Rogister ◽  
François Lallemend ◽  
...  

Cartilage regenerative medicine has been met with much interest due to their ability to inhibit disease progression of osteoarthritis (OA). The use of adipose-derived stem cells has been suggested as a reliable method for OA treatment because of their potential to differentiate into a variety of cell lines and their potent capability to self-renewal and repair. The aim of this study is to assess adipose-derived stem cells in combination with PRP ability in treating a patient with knee OA. A 53-year- old man with osteoarthritis was selected for this treatment. Human abdominal subcutaneous adipose sample was obtained from a patient with knee OA. Stem cells were obtained from adipose tissue of abdominal origin by digesting lipoaspirate tissue with collagenase. ADSCs cultured in DMEM medium supplemented with 10% FBS. Also, ADSCs expanded and characterized by flow cytometry. These stem cells, along with platelet-rich plasma and calcium chloride, were injected into the right knee. Pre-treatment and post-treatment MRI scans, physical therapy, and pain score data were then analyzed. The MRI data for the patient demonstrated significant positive changes. Probable cartilage regeneration was sensible in the patient. Along with MRI evidence, the measured physical therapy outcomes, subjective pain, and functional status all improved. Autologous adipose-derived stem cell injection, in conjunction with platelet-rich plasma is a promising minimally invasive therapy for osteoarthritis of human knees. The present clinical case report demonstrated that a combination of percutaneous injection of autologous ADSCs and PRPmay be able to regenerate cartilage in human knee OA.


2019 ◽  
Vol 517 (2) ◽  
pp. 369-375 ◽  
Author(s):  
Oto Inoue ◽  
Soichiro Usui ◽  
Shin-ichiro Takashima ◽  
Ayano Nomura ◽  
Kosei Yamaguchi ◽  
...  

2019 ◽  
Vol 110 ◽  
pp. 19-28 ◽  
Author(s):  
Ann-Cathrin Volz ◽  
Birgit Omengo ◽  
Sandra Gehrke ◽  
Petra Juliane Kluger

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3210
Author(s):  
Diana Câmara ◽  
Jamil Shibli ◽  
Eduardo Müller ◽  
Paulo De-Sá-Junior ◽  
Allan Porcacchia ◽  
...  

Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues using different methods. Active research have confirmed that the most accessible site to collect them is the adipose tissue; which has a significantly higher concentration of MSCs. Moreover; harvesting from adipose tissue is less invasive; there are no ethical limitations and a lower risk of severe complications. These adipose-derived stem cells (ASCs) are also able to increase at higher rates and showing telomerase activity, which acts by maintaining the DNA stability during cell divisions. Adipose-derived stem cells secret molecules that show important function in other cells vitality and mechanisms associated with the immune system, central nervous system, the heart and several muscles. They release cytokines involved in pro/anti-inflammatory, angiogenic and hematopoietic processes. Adipose-derived stem cells also have immunosuppressive properties and have been reported to be “immune privileged” since they show negative or low expression of human leukocyte antigens. Translational medicine and basic research projects can take advantage of bioprinting. This technology allows precise control for both scaffolds and cells. The properties of cell adhesion, migration, maturation, proliferation, mimicry of cell microenvironment, and differentiation should be promoted by the printed biomaterial used in tissue engineering. Self-renewal and potency are presented by MSCs, which implies in an open-source for 3D bioprinting and regenerative medicine. Considering these features and necessities, ASCs can be applied in the designing of tissue engineering products. Understanding the heterogeneity of ASCs and optimizing their properties can contribute to making the best therapeutic use of these cells and opening new paths to make tissue engineering even more useful.


Biomaterials ◽  
2012 ◽  
Vol 33 (18) ◽  
pp. 4490-4499 ◽  
Author(s):  
Allison E.B. Turner ◽  
Claire Yu ◽  
Juares Bianco ◽  
John F. Watkins ◽  
Lauren E. Flynn

2018 ◽  
Vol 6 (1) ◽  
pp. 168-178 ◽  
Author(s):  
V. Guneta ◽  
Z. Zhou ◽  
N. S. Tan ◽  
S. Sugii ◽  
M. T. C. Wong ◽  
...  

The extracellular matrix (ECM) plays an important role in cellular fate decisions as demonstrated by adipose-derived stem cells (ASCs).


Sign in / Sign up

Export Citation Format

Share Document