Recellularization of decellularized adipose tissue-derived stem cells: role of the cell-secreted extracellular matrix in cellular differentiation

2018 ◽  
Vol 6 (1) ◽  
pp. 168-178 ◽  
Author(s):  
V. Guneta ◽  
Z. Zhou ◽  
N. S. Tan ◽  
S. Sugii ◽  
M. T. C. Wong ◽  
...  

The extracellular matrix (ECM) plays an important role in cellular fate decisions as demonstrated by adipose-derived stem cells (ASCs).

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2326 ◽  
Author(s):  
Hisham F. Bahmad ◽  
Reem Daouk ◽  
Joseph Azar ◽  
Jiranuwat Sapudom ◽  
Jeremy C. M. Teo ◽  
...  

Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells’ differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This review focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.


2020 ◽  
Vol 9 (4) ◽  
pp. 991 ◽  
Author(s):  
Elizabeth Brett ◽  
Matthias Sauter ◽  
Éadaoin Timmins ◽  
Omid Azimzadeh ◽  
Michael Rosemann ◽  
...  

The triple-negative breast tumor boundary is made of aligned, linear collagen. The pro-oncogenic impact of linear collagen is well established; however, its mechanism of formation is unknown. An in vitro analogue of the tumor border is created by a co-culture of MDA-MB-231 cells, adipose derived stem cells, and dermal fibroblasts. Decellularization of this co-culture after seven days reveals an extracellular matrix that is linear in fashion, high in pro-oncogenic collagen type VI, and able to promote invasion of reseeded cells. Further investigation revealed linear collagen VI is produced by fibroblasts in response to a paracrine co-culture of adipose derived stem cells and MDA-MB-231, which together secrete high levels of the chemokine CCL5. The addition of monoclonal antibody against CCL5 to the co-culture results in an unorganized matrix with dramatically decreased collagen VI. Importantly, reseeded cells do not exhibit pro-oncogenic behavior. These data illustrate a cellular mechanism, which creates linear extracellular matrix (ECM) in vitro, and highlight a potential role of CCL5 for building striated tumor collagen in vivo.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Xueying Chen ◽  
Xiaoying He ◽  
Yan Guo ◽  
Liehua Liu ◽  
Hai Li ◽  
...  

Abstract Increased visceral fat correlates with a high risk of morbidity and mortality from diabetes and other metabolic diseases. To cope with changes of nutritional status, the adipose tissue undergoes dynamic remodeling, during which adipose derived stem cells (ADSCs) participate through cell proliferation and adipogenic differentiation into mature adipocytes. Besides, beige adipocytes formation from ADSCs, to dissipate energy as heat in mitochondrial via uncoupling protein1 (UCP1) has been proved to improve energy expenditure. Thus, modifying adipose remodeling and promoting beige adipogenesis of ADSCs in visceral fat bring much metabolic benefits. Newly listed LY3298176, an agonist targeted on glucose-dependent insulinotropic polypeptide (GIP) /glucagon-like peptide-1 (GLP-1) receptor, shows outstanding effect of reducing glucose and weight. Due to superior efficacy in dual-target agonist to GLP-1 monotherapy, and the unknown role of GIP in human visceral adipose, we aimed to clarify GIP’s role in undifferentiated ADSCs in vivo. We selected cell model derived from abdominal omental adipose tissue by obtaining ADSCs via primary culture from patients, because of wide-distributed GIP receptors in fat, and the dominant role of abdominal fat in metabolism. Then the cells were allowed to proliferate, or differentiate into adipocytes in the differentiation medium (DM), with or without co-treated with GIP or GIP3-42 (GIP receptor antagonist), followed by subsequently measurement. CCK-8, EdU incorporation, and cell cycle analysis were conducted to assess cellular proliferation. Annexin V FITC/PI stain, TUNEL and cleaved caspase3 detection were performed to evaluate apoptosis. The related signaling pathway was measured by Western blot and the validation was conducted by using pathway inhibitors followed with the above proliferation and apoptosis analysis. Besides, at the early stage of adipogenesis, mitotic clonal expansion (MCE) was reflected by cell cycle detection. Western blot analysis, quantitative real time-PCR (qRT-PCR), and Oil Red O staining were performed to evaluate adipogenesis. We found that GIP facilitated ADSCs viability and DNA synthesis, accelerated cell cycle progress and reduced palmitate-induced apoptosis by promoting phosphorylation of ERK1/2, AKT, PKA and AMPK. We further confirmed that ADSCs after confluence underwent MCE once induced by DM. GIP also modified adipogenesis by accelerating MCE, upregulating core transcription factor (PPARγ and C/EBPα), increasing beige-related markers (UCP1, PGC1α, PRDM16, et al) while suppressing white-related genes (ZFP423 and TLE3). In summary, we illustrated the efficacies of GIP on proliferation, apoptosis and adipogenesis (especially the beige adipocyte formation) of ADSCs, providing evidence of the additional metabolic benefits of GIP/GLP-1 dual-target agonist over GLP-1 agonist monotherapy in vivo.


2021 ◽  
Vol 22 (3) ◽  
pp. 1375
Author(s):  
María Carmen Carceller ◽  
María Isabel Guillén ◽  
María Luisa Gil ◽  
María José Alcaraz

Adipose tissue represents an abundant source of mesenchymal stem cells (MSC) for therapeutic purposes. Previous studies have demonstrated the anti-inflammatory potential of adipose tissue-derived MSC (ASC). Extracellular vesicles (EV) present in the conditioned medium (CM) have been shown to mediate the cytoprotective effects of human ASC secretome. Nevertheless, the role of EV in the anti-inflammatory effects of mouse-derived ASC is not known. The current study has investigated the influence of mouse-derived ASC CM and its fractions on the response of mouse-derived peritoneal macrophages against lipopolysaccharide (LPS). CM and its soluble fraction reduced the release of pro-inflammatory cytokines, adenosine triphosphate and nitric oxide in stimulated cells. They also enhanced the migration of neutrophils or monocytes, in the absence or presence of LPS, respectively, which is likely related to the presence of chemokines, and reduced the phagocytic response. The anti-inflammatory effect of CM may be dependent on the regulation of toll-like receptor 4 expression and nuclear factor-κB activation. Our results demonstrate the anti-inflammatory effects of mouse-derived ASC secretome in mouse-derived peritoneal macrophages stimulated with LPS and show that they are not mediated by EV.


Biomaterials ◽  
2007 ◽  
Vol 28 (26) ◽  
pp. 3834-3842 ◽  
Author(s):  
Lauren Flynn ◽  
Glenn D. Prestwich ◽  
John L. Semple ◽  
Kimberly A. Woodhouse

2016 ◽  
Vol 14 (1) ◽  
pp. 112-124 ◽  
Author(s):  
Naghmeh Naderi ◽  
Emman J Combellack ◽  
Michelle Griffin ◽  
Tina Sedaghati ◽  
Muhammad Javed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document