Tail Vein Transection Bleeding Model in Fully Anesthetized Hemophilia A Mice

Author(s):  
Ariadna Carol Illa ◽  
Sarah Baumgarten ◽  
Dennis Danielsen ◽  
Karin Larsen ◽  
Torben Elm ◽  
...  
Keyword(s):  
Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 238-238 ◽  
Author(s):  
Rebecca C. Markovitz ◽  
John F. Healey ◽  
W. Hunter Baldwin ◽  
Ernest T. Parker ◽  
Shannon L. Meeks ◽  
...  

Abstract The development of neutralizing anti-factor VIII (fVIII) antibodies (inhibitors) remains the most significant complication in the treatment of hemophilia A patients. Treatment of inhibitor patients consists of management of bleeding episodes using bypassing agents or porcine fVIII. Inhibitors can be eradicated by immune tolerance induction (ITI) using thrice-weekly administration of large doses of fVIII. However, ITI fails in approximately 30% of patients. Additionally, the median time to tolerance in successful cases is ~18 months, making ITI expensive and inconvenient. In the current study, we used a murine E16 hemophilia A model to test a novel approach to both prevent and eradicate fVIII inhibitors. We hypothesized that conjugation of fVIII to the toxin saporin, a Type I ribosome-inactivating protein, would target fVIII-specific cell surface immunoglobulin and selectively delete fVIII-specific naïve and memory B cells. Recombinant full-length fVIII was covalently linked to saporin using the heterobifunctional crosslinker N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP). To test for eradication of existing fVIII inhibitors by fVIII-saporin, an adoptive transfer protocol was developed to measure fVIII-specific memory B cells. Hemophilia A donor mice were immunized with 2 μg of full-length fVIII by intravenous injection every other week for 8 weeks, followed by a final dose of 4 μg at ten weeks. Four weeks later, the mice were randomized into three treatment groups to receive equimolar doses of saporin, fVIII, or fVIII-saporin. Seven days after treatment, the mice were sacrificed and 4 x 106 plasma cell CD138+-depleted splenocytes were adoptively transferred as a source of fVIII-specific memory B cells into naïve recipient hemophilia A mice. At 24 hours, recipient mice were given a single injection of 0.5, 1.0 or 2.0 μg of recombinant full-length fVIII by tail vein injection. Anti-fVIII IgG antibodies in recipient mice were measured by ELISA 2 and 5 weeks following the fVIII injection. In the absence of fVIII-specific memory B cells from donor mice, naïve hemophilia A mice did not produce detectable anti-fVIII antibodies. Recipient hemophilia A mice receiving splenocytes from fVIII donor and saporin donor mice displayed a dose-dependent increase in anti-fVIII antibodies. In contrast, the slope of the anti-fVIII titer versus dose of fVIII was significantly decreased in recipient mice receiving splenocytes from fVIII-saporin donor mice. To test for prevention of fVIII inhibitor formation by fVIII-saporin, naïve hemophilia A mice were divided into three treatment groups to receive a single dose of saporin, fVIII, or fVIII-saporin by tail vein injection. Seven days after treatment, the mice were immunized by tail vein injection with 2 μg of full-length fVIII every other week for 10 weeks. Anti-fVIII IgG antibodies were measured 1 week after the fourth and sixth injections of fVIII. Anti-fVIII antibody titers were significantly lower in the fVIII-saporin group compared to the fVIII group (1,900 vs. 21,400 (p=0.027, n=4, Mann-Whitney test, see figure) after the fourth injection. After 6 injections, the average anti-fVIII titer of the fVIII group was 23,000 compared to 4,000 in the fVIII-saporin group (p=0.057, n=4, Mann-Whitney test, see figure). In conclusion, our results suggest that infusion of fVIII-saporin results in the depletion of both fVIII-specific naïve B cells and memory B cells. FVIII-saporin potentially could be used in the treatment of congenital hemophilia A patients with inhibitors and patients with acquired hemophilia A. In addition, fVIII-saporin potentially could be used in previously untreated patients with hemophilia A to prevent inhibitor development. Similar therapeutic strategies could be extended to other antigen-specific immune disorders. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1187-1187 ◽  
Author(s):  
Shannon L. Meeks ◽  
Courtney Cox ◽  
John F. Healey ◽  
Ernest T Parker ◽  
Bagirath Gangadharan ◽  
...  

Abstract Abstract 1187 A major complication in the treatment of severe hemophilia A is the development of anti-fVIII antibodies in approximately 30% of patients. In these patients and in animal models injection of fVIII by an intravenous route, which traditionally is considered a tolerogenic route of protein delivery, not only fails to induce tolerance but induces a brisk T- and B- cell immune response. The role of fVIII structure and function in the immunogenicity of fVIII remains unclear. In this study we tested four interrelated hypotheses: (i) FVIII is immunogenic due to its role in promoting production of thrombin, leading to downstream events that provide an immunogenic milieu. (ii) FVIII is immunogenic because it is exposed to the immune system in the context of active inflammation (i.e. at the site of a clot). (iii) Structural determinants intrinsic to the fVIII molecule are immunogenic. (iv) FVIII is protected from the immune system until it is released from its large carrier protein von Willebrand factor (VWF). To address these hypotheses we constructed wild-type B domain deleted fVIII (wt fVIII) and 2 structurally intact inactive fVIII molecules, R372A/R1689A fVIII and an A2 domain point mutant, V634M fVIII. R372A/R1689A fVIII is inactive due to substitutions at thrombin and factor X proteolytic activation sites. It is not released from VWF, and thus may not be present at the site of a clot. V634M fVIII undergoes normal thrombin cleavage but has specific procoagulant activity that is less than 1% of wt fVIII. The immunogenicity of the fVIII molecules was compared in 3 protocols. In a low dose protocol, fVIII deficient mice were injected with 6 weekly tail vein injections of 0.2 μg followed by 2 injections of 0.5 μg wt fVIII or R372A/R1689A fVIII. In a varying dose protocol, the immunogenicity of wt fVIII, R372A/R1689A fVIII, and V634M fVIII was determined in fVIII deficient mice following 4 weekly tail vein injections of 0.5 μg, 1.0 μg, 1.5 μg, or 2.0 μg fVIII per dose followed by 1 boost at twice the dose. Finally, the immunogenicity of wt fVIII, R372A/R1689A fVIII, and V634M fVIII was compared in fVIII/VWF deficient mice following 6 weekly injections at 0.6 μg followed by 2 boost injections at 1.5 μg. In the low dose protocol 68% of fVIII deficient mice injected with wt fVIII had positive ELISA titers with a median titer of 400 compared with 40% of those injected with R372A/R1689A fVIII with a median titer of 0. Mice injected with wt fVIII had a median inhibitor titer of 10 BU/ml compared with a median titer of 0. Although R372A/R1689A fVIII was statistically less immunogenic with lower ELISA and inhibitor titers (p=0.027 and 0.018, respectively, Mann-Whitney test) this may not be clinically relevant as 40% of the mice mounted an immune response. In the varying dose protocol, there was no difference in median ELISA fVIII inhibitor titers at any dosing level. At the 2.0 μg dose all mice except for 1 in the V634M fVIII cohort mounted an immune response. The median ELISA titers at 2.0 μg were1760 for wt fVIII, 447 for R372A/R1689A fVIII, and 1480 for V634M fVIII. The median inhibitor titers at the 2.0 μg dose were 310 BU/ml for wt fVIII, 103 BU/ml for R372A/R1689A fVIII, and 288 BU/ml for V634M fVIII. There was no significant difference between wt fVIII, R372A/R1689A fVIII and V634M fVIII in either ELISA or inhibitor titers (p=0.2 and p=0.35, respectively, Kruskal-Wallis test). In the fVIII/VWF deficient mouse protocol, 85% of mice had positive ELISA titers in the wt fVIII cohort compared with 79% for R372A/R1689A fVIII and 85% for V634M fVIII. The median ELISA titers were similar for each group at 354 for wt fVIII, 179 for R372A/R1689A fVIII, and 363 for V634M fVIII. Inhibitor titers were similar for each group with a median inhibitor titer of 107 BU/ml for wt fVIII, 46 BU/ml for R372A/R1689A fVIII, and 198 BU/ml for V634M fVIII. There was no significant difference between wt fVIII, R372A/R1689A fVIII and V634M fVIII in either ELISA or inhibitor titers (p=0.46 and p=0.32, respectively, Kruskal-Wallis test). In conclusion, there was no significant difference in the immunogenicity of wt fVIII and V634M fVIII in fVIII deficient mice. R372A/R1689A fVIII was slightly less immunogenic in fVIII deficient mice in 1 of 2 protocols tested. In the absence of VWF, wt fVIII, R372A/R1689A fVIII, and V634M fVIII were equally immunogenic. This suggests that the immunogenicity of fVIII is intrinsic to fVIII structure and not its cofactor activity, while VWF may have a small protective effect. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3492-3492 ◽  
Author(s):  
Douglas Drager ◽  
Sue Patarroyo-White ◽  
Hoson Chao ◽  
Ayman Ismail ◽  
Jiayun Liu ◽  
...  

Abstract All currently marketed Factor VIII (FVIII) molecules are administered intravenously (IV) for the treatment of hemophilia A (HemA). Conventional FVIII prophylaxis requires a dosing interval of three times per week to every other day. This frequent dosing regimen necessitates repeated venous access and is associated with complications such as secondary infection in children with a venous port/catheter. More recently, extended half-life variants of FVIII have been shown in clinical trials to decrease the dosing interval to twice weekly or less frequent IV dosing, which reduces, but does not eliminate, the burden of treatment. A FVIII molecule with further prolonged half-life and subcutaneous (SQ) delivery potential could significantly relieve the treatment burden for HemA patients and improve the adherence rate to FVIII prophylaxis. Recombinant FVIIIFc-VWF-XTEN has been shown to not bind endogenous VWF, and is able to achieve a 4-fold extension of half-life in hemophilia A mice compared to conventional FVIII, well beyond the approximately 2-fold half-life extension limit demonstrated by other long-acting FVIII variants that bind endogenous VWF. It comprises of two polypeptide chains: 1) a single chain B-domain deleted FVIIIFc-XTEN chain with a XTEN polypeptide inserted at the B-domain region of native FVIII sequence, and 2) a VWF D'D3-XTEN-Fc chain xtend one that n TEN fragemnt o FVIII prophylaxis.ntial rity of the patients depending on the half-life of the FVIII molecule. with a second XTEN polypeptide inserted between D'D3 domain and Fc. The rFVIIIFc-VWF-XTEN protein was produced in HEK293 cells and affinity purified using VIIISelect resin. The pharmacokinetic (PK) profiles of intravenously (IV) and subcutaneously (SQ) administered rFVIIIFc-VWF-XTEN were compared to those of rFVIII in HemA mice. The duration of the in vivo efficacy of rFVIIIFc-VWF-XTEN post-SQ delivery was assessed in a HemA mouse tail vein transection (TVT) bleeding model. After intravenous dosing in HemA mice, we observed a linear PK profile for rFVIIIFc-VWF-XTEN within the therapeutic dose range (25, 50, 100 IU/kg). The half-life of IV-administered rFVIIIFc-VWF-XTEN was about 37 h, which is more than 4-fold longer than that of rFVIII. In addition, animals that received 25 IU/kg of rFVIIIFc-VWF-XTEN treatment retained 5% of normal FVIII activity at 120 h post-dosing, which suggests the potential for full protection from spontaneous bleeding in this animal model. When delivered subcutaneously, the bioavailability of rFVIIIFc-VWF-XTEN was 20%, a significant increase compared to the bioavailability of rFVIII (less than 1%). Starting at 24 h post-dosing, subcutaneous administration of rFVIIIFc-VWF-XTEN achieved plasma FVIII levels that were equal to or greater than those attained with rFVIII delivered intravenously at the same dose. In addition, greater than 5% of normal circulating FVIII level was observed at 96 h post SQ administration of rFVIIIFc-VWF-XTEN with a 100 IU/kg dose, which provided 80% protection on survival in mice subjected to tail vein transection injury. These results suggest that rFVIIIFc-VWF-XTEN could enable less frequent FVIII replacement treatment compared to rFVIII even when administered subcutaneously. The VWF independence of rFVIIIFc-VWF-XTEN enables a 4-fold increase in circulating half-life compared to that of rFVIII. Also, the addition of D'D3 domains and the two XTEN insertions dramatically increases subcutaneous bioavailability to 20%, compared to less than 1% with conventional FVIII. These unique properties of rFVIIIFc-VWF-XTEN make it a potential candidate for both IV and SQ treatments for hemophilia A. Disclosures Drager: Biogen: Employment, Equity Ownership. Patarroyo-White:Biogen: Employment, Equity Ownership. Chao:Biogen: Employment, Equity Ownership. Ismail:Biogen: Employment. Liu:Biogen: Employment, Equity Ownership. Holthaus:Biogen: Employment. Chhabra:Biogen: Employment, Equity Ownership. Kulman:Biogen: Employment. Schellenberger:Amunix Operating Inc: Employment. Liu:Biogen: Employment, Equity Ownership. Peters:Biogen: Employment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3575-3575
Author(s):  
Janice M. Staber ◽  
Erin Burnight ◽  
Marie- Ellen Sarvida ◽  
Anton McCaffrey ◽  
Joseph Kaminski ◽  
...  

Abstract Abstract 3575 Poster Board III-512 Human Factor VIII (hFVIII) deficiency offers advantages as a disease target for gene therapy as small increases in factor VIII levels will alter the bleeding phenotype. In addition, both mouse and dog models of the disease are available for preclinical studies. Nonviral DNA transposons are genetic elements consisting of inverted terminal DNA repeats which in their naturally occurring configuration flank a transposase coding sequence. The transposase follows a “cut and paste” mechanism to excise the transposon from its original genomic location and insert it into a new locus. The insect derived piggyBAC can be engineered to carry a therapeutic transgene between the inverted terminal repeats. Wu et al and others reported that piggyBAC transposase is highly efficient at catalyzing transposition in mammalian cells in vitro (PNAS 103: 15008-15013, 2006). To date, there are no published reports of in vivo gene transfer to mammalian livers using the piggyBAC transposon system. Advantages of this novel nonviral vector system include a large transgene cassette capacity, ease of production and purification, and the ability to excise itself precisely without leaving a footprint. We hypothesize that a piggyBAC transposon vector carrying a reporter gene cassette or the human FVIII cDNA along with a codon-optimized (co-) transposase will confer persistent gene expression and correction of the hemophilia A bleeding phenotype with the FVIII cDNA. PiggyBAC transposons were engineered to carry a hygromycin resistance gene (Hygro), a luciferase expression cassette (PB luciferase), or a human alpha1 antitrypsin reporter (hAAT). We evaluated co- transposase-mediated transposition in the Huh-7 human hepatoma cell line to verify function in hepatocytes. Using the PB hygro vector, we demonstrated that the co- transposase generated higher transposition efficiency than an inactive mutant in hepatocytes. We then showed in vivo persistence following hydrodynamic tail-vein injection using firefly luciferase expression driven by the murine albumin enhancer/human alpha anti-trypsin promoter. Luciferase expression measured via in vivo bioluminescence imaging persisted up to eight months in C57Bl/6 liver (duration of experiment). Following partial hepatectomies at 5 months post injection, expression was observed only in animals receiving PB luciferase transposon and an active transposase while expression in those treated with the inactive mutant dropped to background levels supporting that expression was from integrated transgene. We furthered these experiments by introducing PB hAAT via hydrodynamic tail-vein injection as before at either a low (12.5 micrograms each transposon and transposase) or high (50 micrograms each) dose. Serum hAAT levels were measured at 421ng/ml and 365ng/ml via ELISA at 3 months post-injection, respectively. PB vectors encoding hFVIII have been prepared, and our studies with these vectors are ongoing. These data represent one of the first studies to show persistent transgene expression in vivo from piggyBAC transposon gene transfer. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 250-250 ◽  
Author(s):  
Jenny McIntosh ◽  
Peter J Lenting ◽  
Edward Tuddenham ◽  
Motunrayo Sotannde ◽  
Simon Waddington ◽  
...  

Abstract Abstract 250 Hemophilia A (HA, or clotting factor VIII deficiency), the commonest inherited bleeding disorder, is a good model for early proof of concept gene therapy studies. This is primarily because its clinical manifestations are entirely attributable to the lack of a single gene product (FVIII) that circulates in minute amounts (200ng/ml) in the plasma. Furthermore, a modest increase in the level of FVIII (>1% of normal) can ameliorate the severe phenotype. Several different gene transfer strategies for FVIII replacement have been evaluated but these have been hampered by the fact that hFVIII protein expression is highly inefficient. In addition the relatively large size of the hFVIII cDNA, (≂f7.0 kb) far exceeds the normal packaging capacity of adeno-associated viral vectors (AAV), which are currently the vectors of choice for the correction of genetic disorders such as hemophilia A. We have begun to address some of these limitations through the development of a 5.7kb AAV expression cassette (rAAV-HLP-codop-hFVIII-N6) which consists of a novel more potent hFVIII (codop-hFVIII-N6) which contains a short 226 amino-acid B-domain spacer, rich in asparagine-linked oligosaccharides, which is currently the most efficiently expressed hFVIII variant. This variant is under the control of a small ≂f200bp liver specific promoter. This expression cassette can be efficiently packaged into a single AAV vector, without significantly compromising vector yields. Transient transfection of this rAAV expression cassette into the HuH7 liver cell-line resulted in hFVIII expression that was between 4 and 8 (0.05±0.02IU/ml/24h) fold higher than that achieved with the B domain deleted (BDD-hFVIII) and N6-hFVIII variants respectively. Tail vein injection of serotype 5 or 8 pseudotyped vector rAAV-HLP-codop-hFVIII-N6 in C57Bl/6 mice resulted in detectable hFVIII within two weeks of gene transfer, reaching steady state levels of 23±6 IU/ml and 54±12 IU/ml respectively by 10 weeks. This level of expression is at least 400-fold greater than required for therapeutic efficacy (0.05IU/ml) and at least 10 fold higher than achieved in mice transduced with a comparable dose of rAAV encoding either the BDD or N6 variant of hFVIII. Southern blot analysis of DNA extracted from the liver of rAAV-HLP-codop-hFVIII-N6 transduced mice revealed head-to-tail and head-to-head concatemer fragments of ≂f5kb and ≂f10kb respectively in the expected ratio of 3:1. Western blot analysis showed that the rAAV-HLP-codop-hFVIII-N6 cassette mediated the synthesis and secretion of a single chain 210kd protein. To confirm correction of the bleeding phenotype, either 4×1011 (low-dose cohort, n=3) or 4×1012 (high-dose cohort, n=3) rAAV5-HLP-codop-hFVIII-N6 vector genomes were injected into the tail vein of haemophilia A knockout mice. Peak hFVIII levels, as determined by a one-stage clotting assay, were 137±27% and 374±18% of normal levels in the low and high-dose cohorts of F8-/- mice respectively. These levels were sufficient to arrest bleeding in a modified tail clip assay. Anti-hFVIII antibodies were not detected in the rAAV treated HA mice at any stage. Therefore, the higher potency of our novel codop-hFVIII-N6 construct and the ability to package this FVIII variant within AAV virions has substantially improved the prospects of effective gene transfer for Hemophilia A. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
J.E. Michaels ◽  
S.A. Garfield ◽  
J.T. Hung ◽  
S.S. Smith ◽  
R.R. Cardell

3H-galactose (gal) and 3H-glucose (glu) were compared to determine which compound was preferable for pulse labeling newly formed hepatic glycogen. Control fed rats were used to achieve substantial and consistent levels of hepatic glycogen and to stimulate glycogen synthesis.Rats fed once daily for 4 hr achieved hepatic glycogen levels > 3% wet weight liver prior to injection by tail vein of a tracer dose of 3H-gal or 3H-glu. The rats were sacrificed 15-120 min later and liver was prepared by routine techniques for light (LM) and electron microscopic (EM) radioautography (RAG) and biochemical analysis.


1996 ◽  
Vol 76 (01) ◽  
pp. 017-022 ◽  
Author(s):  
Sylvia T Singer ◽  
Joseph E Addiego ◽  
Donald C Reason ◽  
Alexander H Lucas

SummaryIn this study we sought to determine whether factor VUI-reactive T lymphocytes were present in hemophilia A patients with inhibitor antibodies. Peripheral blood mononuclear cells (MNC) were obtained from 12 severe hemophilia A patients having high titer inhibitors, 4 severe hemophilia A patients without inhibitors and 5 normal male subjects. B cell-depleted MNC were cultured in serum-free medium in the absence or presence of 2 µg of recombinant human factor VIII (rFVIII) per ml, and cellular proliferation was assessed after 5 days of culture by measuring 3H-thymidine incorporation. rFVIII induced marked cellular proliferation in cultures of 4 of 12 inhibitor-positive hemophilia patients: fold increase over background (stimulation index, SI) of 7.8 to 23.3. The remaining 8 inhibitor-positive patients, the 4 hemophilia patients without inhibitors and the 5 normal subjects, all had lower proliferative responses to rFVIII, SI range = 1.6 to 6.0. As a group, the inhibitor-positive subjects had significantly higher proliferative responses to rFVIII than did the inhibitor-negative and normal subjects (p < 0.05 by t-test). Cell fractionation experiments showed that T lymphocytes were the rFVIII-responsive cell type, and that monocytes were required for T cell proliferation. Thus, rFVIII-reactive T lymphocytes are present in the peripheral circulation of some inhibitor-positive hemophilia A patients. These T cells may recognize FVIII in an antigen-specific manner and play a central role in the regulation of inhibitor antibody production


1995 ◽  
Vol 74 (05) ◽  
pp. 1255-1258 ◽  
Author(s):  
Arnaldo A Arbini ◽  
Pier Mannuccio Mannucci ◽  
Kenneth A Bauer

SummaryPatients with hemophilia A and B and factor levels less than 1 percent of normal bleed frequently with an average number of spontaneous bleeding episodes of 20–30 or more. However there are patients with equally low levels of factor VIII or factor IX who bleed once or twice per year or not at all. To examine whether the presence of a hereditary defect predisposing to hypercoagulability might play a role in amelio rating the hemorrhagic tendency in these so-called “mild severe” hemophiliacs, we determined the prevalence of prothrombotic defects in 17 patients with hemophilia A and four patients with hemophilia B selected from 295 and 76 individuals with these disorders, respectively, followed at a large Italian hemophilia center. We tested for the presence of the Factor V Leiden mutation by PCR-amplifying a fragment of the factor V gene which contains the mutation site and then digesting the product with the restriction enzyme Mnll. None of the patients with hemophilia A and only one patient with hemophilia B was heterozygous for Factor V Leiden. None of the 21 patients had hereditary deficiencies of antithrombin III, protein C, or protein S. Our results indicate that the milder bleeding diathesis that is occasionally seen among Italian hemophiliacs with factor levels that are less than 1 percent cannot be explained by the concomitant expression of a known prothrombotic defect.


Sign in / Sign up

Export Citation Format

Share Document