scholarly journals In Vitro Nuclear Assembly Using Fractionated Xenopus Egg Extracts

Author(s):  
Marie Cross ◽  
Maureen Powers
1995 ◽  
Vol 6 (2) ◽  
pp. 227-236 ◽  
Author(s):  
J Rosenblatt ◽  
P Peluso ◽  
T J Mitchison

Non-muscle cells contain 15-500 microM actin, a large fraction of which is unpolymerized. Thus, the concentration of unpolymerized actin is well above the critical concentration for polymerization in vitro (0.2 microM). This fraction of actin could be prevented from polymerization by being ADP bound (therefore less favored to polymerize) or by being ATP bound and sequestered by a protein such as thymosin beta 4, or both. We isolated the unpolymerized actin from Xenopus egg extracts using immobilized DNase 1 and assayed the bound nucleotide. High-pressure liquid chromatography analysis showed that the bulk of soluble actin is ATP bound. Analysis of actin-bound nucleotide exchange rates suggested the existence of two pools of unpolymerized actin, one of which exchanges nucleotide relatively rapidly and another that apparently does not exchange. Native gel electrophoresis of Xenopus egg extracts demonstrated that most of the soluble actin exists in complexes with other proteins, one of which might be thymosin beta 4. These results are consistent with actin polymerization being controlled by the sequestration and release of ATP-bound actin, and argue against nucleotide exchange playing a major role in regulating actin polymerization.


1995 ◽  
Vol 108 (6) ◽  
pp. 2187-2196 ◽  
Author(s):  
L.J. Wangh ◽  
D. DeGrace ◽  
J.A. Sanchez ◽  
A. Gold ◽  
Y. Yeghiazarians ◽  
...  

Rapid genome replication is one of the hallmarks of the frog embryonic cell cycle. We report here that complete reactivation of quiescent somatic cell nuclei in Xenopus egg extracts depends on prior restructuring of the nuclear substrate and prior preparation of cytoplasmic extract with the highest capacity to initiate and sustain DNA synthesis. Nuclei from mature erythrocytes swell, replicate their DNA efficiently, and enter mitosis in frozen/thawed extracts prepared from activated Xenopus eggs, provided the nuclei are first treated with trypsin, heparin, and an extract prepared from unactivated, meiotically arrested, eggs. Optimal replicating extracts are prepared from large batches of unfertilized eggs that are synchronously activated into the cell cycle for 28 minutes (at 20 degrees C). Because the Xenopus cell cycle progresses so rapidly, extracts prepared just a few minutes before or after this time have substantially lower DNA synthetic capacities. At the optimal time and temperature, eggs have just reached the G1/S boundary of the first cell cycle. This fact was revealed by injecting and replicating an SV40 plasmid in intact unfertilized eggs as described previously. We estimate that under optimal conditions approximately 6.14 × 10(9) base pairs of DNA/per nucleus are synthesized in 30–40 minutes, a rate that rivals that observed in the zygotic nucleus. The findings reported here are one step in our long term effort to develop a new in vitro/in vivo approach to nuclear transplantation. Nuclear transplantation in amphibian embryos has been used to establish that the genomes of many types of differentiated somatic cells are pluripotent. But very few such nuclei have ever developed into advanced tadpoles or adult frogs, probably because somatic nuclei injected directly into activated eggs fail to reactivate quickly enough to avoid being damaged during first mitosis. We have already shown that unfertilized eggs can be injected prior to activation of the first cell cycle. Future experiments will reveal whether in vitro reactivated somatic cell nuclei transplanted into such eggs reliably reach advanced stages of development.


1996 ◽  
Vol 109 (1) ◽  
pp. 239-246 ◽  
Author(s):  
A. Abrieu ◽  
T. Lorca ◽  
J.C. Labbe ◽  
N. Morin ◽  
S. Keyse ◽  
...  

Unfertilized frog eggs arrest at the second meiotic metaphase, due to cytostatic activity of the c-mos proto-oncogene (CSF). MAP kinase has been proposed to mediate CSF activity in suppressing cyclin degradation. Using an in vitro assay to generate CSF activity, and recombinant CL 100 phosphatase to inactivate MAP kinase, we confirm that the c-mos proto-oncogene blocks cyclin degradation through MAP kinase activation. We further show that for MAP kinase to suppress cyclin degradation, it must be activated before cyclin B-cdc2 kinase has effectively promoted cyclin degradation. Thus MAP kinase does not inactivate, but rather prevents the cyclin degradation pathway from being turned on. Using a constitutively active mutant of Ca2+/calmodulin dependent protein kinase II, which mediates the effects of Ca2+ at fertilization, we further show that the kinase can activate cyclin degradation in the presence of both MPF and the c-mos proto-oncogene without inactivating MAP kinase.


1991 ◽  
Vol 98 (3) ◽  
pp. 271-279
Author(s):  
J. Meier ◽  
K.H. Campbell ◽  
C.C. Ford ◽  
R. Stick ◽  
C.J. Hutchison

Xenopus egg extracts, which support nuclear assembly and DNA replication, were functionally depleted of lamin LIII by inoculating them with monoclonal anti-lamin antibodies. Phase-contrast microscopy and electron-microscopy studies indicated that lamin-depleted extracts supported efficient chromatin decondensation, and assembly of double membrane structures and nuclear pores on demembranated sperm heads. Immunofluorescence microscopy suggests that lamin-antibody complexes are transported across the nuclear membrane but do not assemble into a lamina. These findings were confirmed by immunoblotting analysis of isolated nuclei. Metabolic labelling studies with either biotin-11-dUTP or [32P]dCTP, revealed that nuclei lacking a lamina were unable to initiate DNA replication and that, although such nuclei could import proteins required for DNA replication (e.g. PCNA), these proteins were apparently not organized into replicon clusters.


2019 ◽  
Vol 218 (6) ◽  
pp. 2021-2034 ◽  
Author(s):  
Fabian B. Romano ◽  
Neil B. Blok ◽  
Tom A. Rapoport

Peroxisomes import their luminal proteins from the cytosol. Most substrates contain a C-terminal Ser-Lys-Leu (SKL) sequence that is recognized by the receptor Pex5. Pex5 binds to peroxisomes via a docking complex containing Pex14, and recycles back into the cytosol following its mono-ubiquitination at a conserved Cys residue. The mechanism of peroxisome protein import remains incompletely understood. Here, we developed an in vitro import system based on Xenopus egg extracts. Import is dependent on the SKL motif in the substrate and on the presence of Pex5 and Pex14, and is sustained by ATP hydrolysis. A protein lacking an SKL sequence can be coimported, providing strong evidence for import of a folded protein. The conserved cysteine in Pex5 is not essential for import or to clear import sites for subsequent rounds of translocation. This new in vitro assay will be useful for further dissecting the mechanism of peroxisome protein import.


1994 ◽  
Vol 125 (4) ◽  
pp. 705-719 ◽  
Author(s):  
S Kornbluth ◽  
M Dasso ◽  
J Newport

TC4, a ras-like G protein, has been implicated in the feedback pathway linking the onset of mitosis to the completion of DNA replication. In this report we find distinct roles for TC4 in both nuclear assembly and cell cycle progression. Mutant and wild-type forms of TC4 were added to Xenopus egg extracts capable of assembling nuclei around chromatin templates in vitro. We found that a mutant TC4 protein defective in GTP binding (GDP-bound form) suppressed nuclear growth and prevented DNA replication. Nuclear transport under these conditions approximated normal levels. In a separate set of experiments using a cell-free extract of Xenopus eggs that cycles between S and M phases, the GDP-bound form of TC4 had dramatic effects, blocking entry into mitosis even in the complete absence of nuclei. The effect of this mutant TC4 protein on cell cycle progression is mediated by phosphorylation of p34cdc2 on tyrosine and threonine residues, negatively regulating cdc2 kinase activity. Therefore, we provide direct biochemical evidence for a role of TC4 in both maintaining nuclear structure and in the signaling pathways that regulate entry into mitosis.


2018 ◽  
Vol 2 (S1) ◽  
pp. 13-13
Author(s):  
John Barrows ◽  
David Long

OBJECTIVES/SPECIFIC AIMS: The objective of this work is to determine the mechanistic consequences of BRCA1 mutants in inter-strand crosslink (ICL) repair. METHODS/STUDY POPULATION: Our lab uses Xenopus egg extracts to study ICL repair. These extracts can be depleted of endogenous BRCA1 by immunoprecipitation. The goal of this work is to rescue endogenous depletion with in vitro translated, wild type BRCA1. Once achieved, we can supplement the depleted extract with BRCA1 mutants to access their function in ICL repair. RESULTS/ANTICIPATED RESULTS: We hypothesize that the BRCT and RING domain mutations will abrogate ICL repair, while mutations in the coiled coil region will not affect repair. DISCUSSION/SIGNIFICANCE OF IMPACT: These findings will have an immense impact on the understanding of BRCA1 domains. Importantly these results will spur personalized therapy of BRCA1 mutants by showing which domains are sensitive to cross-linking agents.


2002 ◽  
Vol 158 (3) ◽  
pp. 475-485 ◽  
Author(s):  
Miriam Segura-Totten ◽  
Amy K. Kowalski ◽  
Robert Craigie ◽  
Katherine L. Wilson

Barrier-to-autointegration factor (BAF) is a DNA-bridging protein, highly conserved in metazoans. BAF binds directly to LEM (LAP2, emerin, MAN1) domain nuclear membrane proteins, including LAP2 and emerin. We used site-directed mutagenesis and biochemical analysis to map functionally important residues in human BAF, including those required for direct binding to DNA or emerin. We also tested wild-type BAF and 25 point mutants for their effects on nuclear assembly in Xenopus egg extracts, which contain ∼12 μM endogenous BAF dimers. Exogenous BAF caused two distinct effects: at low added concentrations, wild-type BAF enhanced chromatin decondensation and nuclear growth; at higher added concentrations, wild-type BAF completely blocked chromatin decondensation and nuclear growth. Mutants fell into four classes, including one that defines a novel functional surface on the BAF dimer. Our results suggest that BAF, unregulated, potently compresses chromatin structure, and that BAF interactions with both DNA and LEM proteins are critical for membrane recruitment and chromatin decondensation during nuclear assembly.


Sign in / Sign up

Export Citation Format

Share Document