Region-Based Fractional Wavelet Transform Using Post Processing Artifact Reduction

2012 ◽  
Vol 8 (8) ◽  
pp. 45-53
Author(s):  
Jassim Abdul-Jabbar ◽  
Alyaa Taqi

Wavelet-based algorithms are increasingly used in the source coding of remote sensing, satellite and other geospatial imagery. At the same time, wavelet-based coding applications are also increased in robust communication and network transmission of images. Although wireless multimedia sensors are widely used to deliver multimedia content due to the availability of inexpensive CMOS cameras, their computational and memory resources are still typically very limited. It is known that allowing a low-cost camera sensor node with limited RAM size to perform a multi-level wavelet transform, will in return limit the size of the acquired image. Recently, fractional wavelet filter technique became an interesting solution to reduce communication energy and wireless bandwidth, for resource-constrained devices (e.g. digital cameras). The reduction in the required memory in these fractional wavelet transforms is achieved at the expense of the image quality. In this paper, an adaptive fractional artifacts reduction approach is proposed for efficient filtering operations according to the desired compromise between the effectiveness of artifact reduction and algorithm simplicity using some local image features to reduce boundaries artifacts caused by fractional wavelet. Applying such technique on different types of images with different sizes using CDF 9/7 wavelet filters results in a good performance.

Author(s):  
Aarushi Shrivastava ◽  
Janki Ballabh Sharma ◽  
Sunil Dutt Purohit

Objective: In the recent multimedia technology images play an integral role in communication. Here in this paper, we propose a new color image encryption method using FWT (Fractional Wavelet transform), double random phases and Arnold transform in HSV color domain. Methods: Firstly the image is changed into the HSV domain and the encoding is done using the FWT which is the combination of the fractional Fourier transform with wavelet transform and the two random phase masks are used in the double random phase encoding. In this one inverse DWT is taken at the end in order to obtain the encrypted image. To scramble the matrices the Arnold transform is used with different iterative values. The fractional order of FRFT, the wavelet family and the iterative numbers of Arnold transform are used as various secret keys in order to enhance the level of security of the proposed method. Results: The performance of the scheme is analyzed through its PSNR and SSIM values, key space, entropy, statistical analysis which demonstrates its effectiveness and feasibility of the proposed technique. Stimulation result verifies its robustness in comparison to nearby schemes. Conclusion: This method develops the better security, enlarged and sensitive key space with improved PSNR and SSIM. FWT reflecting time frequency information adds on to its flexibility with additional variables and making it more suitable for secure transmission.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4804
Author(s):  
Marcin Piekarczyk ◽  
Olaf Bar ◽  
Łukasz Bibrzycki ◽  
Michał Niedźwiecki ◽  
Krzysztof Rzecki ◽  
...  

Gamification is known to enhance users’ participation in education and research projects that follow the citizen science paradigm. The Cosmic Ray Extremely Distributed Observatory (CREDO) experiment is designed for the large-scale study of various radiation forms that continuously reach the Earth from space, collectively known as cosmic rays. The CREDO Detector app relies on a network of involved users and is now working worldwide across phones and other CMOS sensor-equipped devices. To broaden the user base and activate current users, CREDO extensively uses the gamification solutions like the periodical Particle Hunters Competition. However, the adverse effect of gamification is that the number of artefacts, i.e., signals unrelated to cosmic ray detection or openly related to cheating, substantially increases. To tag the artefacts appearing in the CREDO database we propose the method based on machine learning. The approach involves training the Convolutional Neural Network (CNN) to recognise the morphological difference between signals and artefacts. As a result we obtain the CNN-based trigger which is able to mimic the signal vs. artefact assignments of human annotators as closely as possible. To enhance the method, the input image signal is adaptively thresholded and then transformed using Daubechies wavelets. In this exploratory study, we use wavelet transforms to amplify distinctive image features. As a result, we obtain a very good recognition ratio of almost 99% for both signal and artefacts. The proposed solution allows eliminating the manual supervision of the competition process.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 291 ◽  
Author(s):  
Hamdi Sahloul ◽  
Shouhei Shirafuji ◽  
Jun Ota

Local image features are invariant to in-plane rotations and robust to minor viewpoint changes. However, the current detectors and descriptors for local image features fail to accommodate out-of-plane rotations larger than 25°–30°. Invariance to such viewpoint changes is essential for numerous applications, including wide baseline matching, 6D pose estimation, and object reconstruction. In this study, we present a general embedding that wraps a detector/descriptor pair in order to increase viewpoint invariance by exploiting input depth maps. The proposed embedding locates smooth surfaces within the input RGB-D images and projects them into a viewpoint invariant representation, enabling the detection and description of more viewpoint invariant features. Our embedding can be utilized with different combinations of descriptor/detector pairs, according to the desired application. Using synthetic and real-world objects, we evaluated the viewpoint invariance of various detectors and descriptors, for both standalone and embedded approaches. While standalone local image features fail to accommodate average viewpoint changes beyond 33.3°, our proposed embedding boosted the viewpoint invariance to different levels, depending on the scene geometry. Objects with distinct surface discontinuities were on average invariant up to 52.8°, and the overall average for all evaluated datasets was 45.4°. Similarly, out of a total of 140 combinations involving 20 local image features and various objects with distinct surface discontinuities, only a single standalone local image feature exceeded the goal of 60° viewpoint difference in just two combinations, as compared with 19 different local image features succeeding in 73 combinations when wrapped in the proposed embedding. Furthermore, the proposed approach operates robustly in the presence of input depth noise, even that of low-cost commodity depth sensors, and well beyond.


Author(s):  
ASHOKA JAYAWARDENA ◽  
PAUL KWAN

In this paper, we focus on the design of oversampled filter banks and the resulting framelets. The framelets obtained exhibit improved shift invariant properties over decimated wavelet transform. Shift invariance has applications in many areas, particularly denoising, coding and compression. Our contribution here is on filter bank completion. In addition, we propose novel factorization methods to design wavelet filters from given scaling filters.


2011 ◽  
Vol 65 ◽  
pp. 497-502
Author(s):  
Yan Wei Wang ◽  
Hui Li Yu

A feature matching algorithm based on wavelet transform and SIFT is proposed in this paper, Firstly, Biorthogonal wavelet transforms algorithm is used for medical image to delaminating, and restoration the processed image. Then the SIFT (Scale Invariant Feature Transform) applied in this paper to abstracting key point. Experimental results show that our algorithm compares favorably in high-compressive ratio, the rapid matching speed and low storage of the image, especially for the tilt and rotation conditions.


2018 ◽  
Vol 26 (2) ◽  
pp. 313-322
Author(s):  
R. Roopkumar

1999 ◽  
Vol 86 (3) ◽  
pp. 1081-1091 ◽  
Author(s):  
Vincent Pichot ◽  
Jean-Michel Gaspoz ◽  
Serge Molliex ◽  
Anestis Antoniadis ◽  
Thierry Busso ◽  
...  

Heart rate variability is a recognized parameter for assessing autonomous nervous system activity. Fourier transform, the most commonly used method to analyze variability, does not offer an easy assessment of its dynamics because of limitations inherent in its stationary hypothesis. Conversely, wavelet transform allows analysis of nonstationary signals. We compared the respective yields of Fourier and wavelet transforms in analyzing heart rate variability during dynamic changes in autonomous nervous system balance induced by atropine and propranolol. Fourier and wavelet transforms were applied to sequences of heart rate intervals in six subjects receiving increasing doses of atropine and propranolol. At the lowest doses of atropine administered, heart rate variability increased, followed by a progressive decrease with higher doses. With the first dose of propranolol, there was a significant increase in heart rate variability, which progressively disappeared after the last dose. Wavelet transform gave significantly better quantitative analysis of heart rate variability than did Fourier transform during autonomous nervous system adaptations induced by both agents and provided novel temporally localized information.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Timur Düzenli ◽  
Nalan Özkurt

The performance of wavelet transform-based features for the speech/music discrimination task has been investigated. In order to extract wavelet domain features, discrete and complex orthogonal wavelet transforms have been used. The performance of the proposed feature set has been compared with a feature set constructed from the most common time, frequency and cepstral domain features such as number of zero crossings, spectral centroid, spectral flux, and Mel cepstral coefficients. The artificial neural networks have been used as classification tool. The principal component analysis has been applied to eliminate the correlated features before the classification stage. For discrete wavelet transform, considering the number of vanishing moments and orthogonality, the best performance is obtained with Daubechies8 wavelet among the other members of the Daubechies family. The dual tree wavelet transform has also demonstrated a successful performance both in terms of accuracy and time consumption. Finally, a real-time discrimination system has been implemented using the Daubhecies8 wavelet which has the best accuracy.


Sign in / Sign up

Export Citation Format

Share Document