scholarly journals Computation of Nonlinear Thermoelectric Effects with Adaptive Methods

Author(s):  
Aizuddin Mohamed ◽  
Razi Abdul-Rahman

An implementation for a fully automatic adaptive finite element method (AFEM) for computation of nonlinear thermoelectric problems in three dimensions is presented. Adaptivity of the nonlinear solvers is based on the well-established hp-adaptivity where the mesh refinement and the polynomial order of elements are methodically controlled to reduce the discretization errors of the coupled field variables temperature and electric potential. A single mesh is used for both fields and the nonlinear coupling of temperature and electric potential is accounted in the computation of a posteriori error estimate where the residuals are computed element-wise. Mesh refinements are implemented for tetrahedral mesh such that conformity of elements with neighboring elements is preserved. Multiple nonlinear solution steps are assessed including variations of the fixed-point method with Anderson acceleration algorithms. The Barzilai-Borwein algorithm to optimize the nonlinear solution steps are also assessed. Promising results have been observed where all the nonlinear methods show the same accuracy with the tendency of approaching convergence with more elements refining. Anderson acceleration is the most efficient among the nonlinear solvers studied where its total computing time is less than half of the more conventional fixed-point iteration.

2017 ◽  
Vol 22 (5) ◽  
pp. 1486-1507 ◽  
Author(s):  
Xue Jiang ◽  
Peijun Li

AbstractConsider the scattering of a time-harmonic acoustic incident wave by a bounded, penetrable, and isotropic elastic solid, which is immersed in a homogeneous compressible air or fluid. The paper concerns the numerical solution for such an acoustic-elastic interaction problem in three dimensions. An exact transparent boundary condition (TBC) is developed to reduce the problem equivalently into a boundary value problem in a bounded domain. The perfectly matched layer (PML) technique is adopted to truncate the unbounded physical domain into a bounded computational domain. The well-posedness and exponential convergence of the solution are established for the truncated PML problem by using a PML equivalent TBC. An a posteriori error estimate based adaptive finite element method is developed to solve the scattering problem. Numerical experiments are included to demonstrate the competitive behavior of the proposed method.


Author(s):  
B Ashby ◽  
C Bortolozo ◽  
A Lukyanov ◽  
T Pryer

Summary In this article, we present a goal-oriented adaptive finite element method for a class of subsurface flow problems in porous media, which exhibit seepage faces. We focus on a representative case of the steady state flows governed by a nonlinear Darcy–Buckingham law with physical constraints on subsurface-atmosphere boundaries. This leads to the formulation of the problem as a variational inequality. The solutions to this problem are investigated using an adaptive finite element method based on a dual-weighted a posteriori error estimate, derived with the aim of reducing error in a specific target quantity. The quantity of interest is chosen as volumetric water flux across the seepage face, and therefore depends on an a priori unknown free boundary. We apply our method to challenging numerical examples as well as specific case studies, from which this research originates, illustrating the major difficulties that arise in practical situations. We summarise extensive numerical results that clearly demonstrate the designed method produces rapid error reduction measured against the number of degrees of freedom.


2001 ◽  
Vol 16 (11) ◽  
pp. 2119-2124 ◽  
Author(s):  
B.-J. SCHAEFER ◽  
O. BOHR ◽  
J. WAMBACH

Self-consistent new renormalization group flow equations for an O(N)-symmetric scalar theory are approximated in next-to-leading order of the derivative expansion. The Wilson-Fisher fixed point in three dimensions is analyzed in detail and various critical exponents are calculated.


1993 ◽  
Vol 132 ◽  
pp. 73-89
Author(s):  
Yi-Sui Sun

AbstractWe have systematically made the numerical exploration about the perturbation extension of area-preserving mappings to three-dimensional ones, in which the fixed points of area preserving are elliptic, parabolic or hyperbolic respectively. It has been observed that: (i) the invariant manifolds in the vicinity of the fixed point generally don’t exist (ii) when the invariant curve of original two-dimensional mapping exists the invariant tubes do also in the neighbourhood of the invariant curve (iii) for the perturbation extension of area-preserving mapping the invariant manifolds can only be generated in the subset of the invariant manifolds of original two-dimensional mapping, (iv) for the perturbation extension of area preserving mappings with hyperbolic or parabolic fixed point the ordered region near and far from the invariant curve will be destroyed by perturbation more easily than the other one, This is a result different from the case with the elliptic fixed point. In the latter the ordered region near invariant curve is solid. Some of the results have been demonstrated exactly.Finally we have discussed the Kolmogorov Entropy of the mappings and studied some applications.


2011 ◽  
Vol 49 (4) ◽  
pp. 1715-1735 ◽  
Author(s):  
Homer F. Walker ◽  
Peng Ni

Author(s):  
Harold Hilton

The geometrical representation of the faces and edges of a crystal is obtained (i) by drawing lines through a fixed point O perpendicular to each crystal-face meeting a fixed sphere with centre O in a point (face-pole) representing that face, (ii) by drawing lines through O parallel to each crystal-edge meeting the sphere in a point (edge-pole) representing that edge. This representation is inconvenient as being in three dimensions, and therefore it is customary to map the sphere on a plane. This is usually done by means of the stereographic or gnomonic projection.


1980 ◽  
Vol 20 (06) ◽  
pp. 533-554 ◽  
Author(s):  
Keith H. Coats

Abstract This paper describes a numerical model forsimulating wet or dry, forward or reverse combustionin one, two, or three dimensions. The formulation isconsiderably more general than any reported to date.The model allows any number and identities ofcomponents. Any component may be distributed inany or all of the four phases (water, oil, gas, andsolid or coke.The formulation allows any number of chemicalreactions. Any reaction may have any number ofreactants, products, and stoichiometry, identifiedthrough input data. The energy balance accounts forheat loss and conduction, conversion, and radiationwithin the reservoir.The model uses no assumptions regarding degreeof oxygen consumption. The oxygen concentration iscalculated throughout the reservoir in accordancewith the calculated fluid flow pattern and reactionkinetics. The model, therefore, simulates the effectsof oxygen bypassing caused by kinetic-limitedcombustion or conformance factors.We believe the implicit model formulation resultsin maximum efficiency (lowest computing cost), andrequired computing times are reported in the paper.The paper includes comparisons of model resultswith reported laboratory adiabatic-tube test results.In addition, the paper includes example field-scalecases, with a sensitivity study showing effects on oilrecovery of uncertainties in rock/fluid properties. Introduction Recent papers by Ali, Crookston et al., andYoungren provide a comprehensive review of earlierwork in numerical modeling of the in-situcombustion process.The trend in this modeling has been toward morerigorous treatment of the fluid flow and interphasemass transfer; inclusion of more components, morecomprehensive reaction kinetics, and stoichiometry;and more implicit treatment of the finite differencemodel equations.The purpose of this work was to extend thegenerality of previous models while preserving orreducing the associated computing-time requirement.The most comprehensive or sophisticated combustionmodels described to date appear to be thoseof Crookston et al. and Youngren. Therefore, wecompare our model formulation and results here withthose models.A common objective of different investigators'efforts in modeling in-situ combustion is developmentof more efficient formulations and methods ofsolution. This is especially important in thecombustion case because of the large number ofcomponents and equations involved. For a given numberof components and reactions, computing time pergrid block per time step will increase rapidly as theformulation is rendered more implicit. However, increasing implicitness tends to allow larger timesteps, which in turn reduces overall computingexpense. To pursue the above objective, then, authorsshould present as completely as possible the details oftheir formulations and the associatedcomputing-time requirements.The thermal model described here simulateswet or dry, forward or reverse combustion in one, two, or three dimensions. The formulation allowsany number and identities of components and anynumber of chemical reactions, with reactants, products, and stoichiometry specified through input products, and stoichiometry specified through input data. SPEJ P. 533


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Damon J. Binder

Abstract By considering the renormalization group flow between N coupled Ising models in the UV and the cubic fixed point in the IR, we study the large N behavior of the cubic fixed points in three dimensions. We derive a diagrammatic expansion for the 1/N corrections to correlation functions. Leading large N corrections to conformal dimensions at the cubic fixed point are then evaluated using numeric conformal bootstrap data for the 3d Ising model.


2004 ◽  
Vol 108 (1085) ◽  
pp. 379-387
Author(s):  
M. Mani ◽  
A. Naghib-Lahouti ◽  
M. Nazarinia

Abstract Results of numerical simulation of inviscid compressible flow around a generic satellite launch vehicle (SLV) with strap-on boosters using a commercial computational fluid dynamics (CFD) code named Star-CD are experimentally evaluated. Governing equations of flow around the SLV with two and two strap-on boosters were solved in three dimensions using the SIMPLE algorithm in an unstructured tetrahedral mesh, to determine longitudinal aerodynamic coefficients and surface pressure distribution at Mach numbers from 0·6 to 2·0, and angles-of-attack from 0° to 16°. To evaluate the numerical results, 1:100th scale models of the SLV were tested in a trisonic wind tunnel in the same configurations and flow conditions as those analysed numerically. Comparison of results shows reasonable agreement between numerical and experimental values, however, drag coefficients had to be corrected to compensate the effects of base flow and the struts connecting the boosters to the core rocket. This evaluation shows that a relatively simple simulation of flow using a commercial CFD code can be considered an efficient tool for prediction of aerodynamic characteristics of a multi body satellite launch vehicle with a level of accuracy acceptable in the process of preliminary aerodynamic design.


Sign in / Sign up

Export Citation Format

Share Document