scholarly journals Ultra-Thin Liquid Film with Shear and the Influences on Thermal Energy Transfer at Solid–Liquid Interfaces of Simple Liquid Methane in Contact With (110) Surface Structure of Face-Centred Cubic Lattice (FCC)

Author(s):  
Abdul Rafeq Saleman ◽  
Mohamad Shukri Zakaria ◽  
Ridhwan Jumaidin ◽  
Mohd Nazmin Maslan

Thermal energy transfer (TET) is the main performance of contact interfaces which has been studied at a molecular level. Several investigations on TET were accomplished, however, the influences of liquid film thickness on TET have not been sufficiently examined. Thus, this paper analyses the influences of liquid film thickness on TET across solid–liquid (S-L) interfaces. Two liquid film thicknesses (Lz) of 30 Å and 60 Å have been evaluated, and two shear directions (x- and y-directions) have been tested in the simulation system. It has been found that there is no significant difference in the density distribution of liquid regardless of the shear directions for the same Lz. However, there are differences in the density distribution of liquid between Lz of 30 Å and 60 Å. Based on the results its suggests that, the cut-off of the temperature and velocity at the contact interfaces of solid and liquid is substantially influences by the liquid thickness of the simulation system. It is found that, there are a significant different in the thermal boundary resistance (TBR) for Lz of 30 Å and 60 Å for cases liquid sheared in the x-direction. Whereas TBR for Lz of 30 Å and 60 Å sheared in the y-direction have no significant difference. In conclusion, the TET is affected by the velocity cut-off at the contact interfaces of solid and liquid where larger velocity discontinuity exhibits higher TBR.

Author(s):  
Kenshiro Muramatsu ◽  
Youngjik Youn ◽  
Youngbae Han ◽  
Keishi Yokoyama ◽  
Yosuke Hasegawa ◽  
...  

Author(s):  
Elyas Rostami ◽  
Hossein Mahdavy Moghaddam

In this study, the atomization of heavy fuel oil (Mazut) and diesel fuel at different pressures is compared experimentally. Also, the effects of temperature on the Mazut fuel atomization are investigated experimentally. Mass flow rate, discharge coefficient, wavelength, liquid film thickness, ligament diameter, spray angle, breakup length, and sature mean diameter are obtained for the Mazut and diesel fuel. Fuels spray images at different pressures and temperatures are recorded using the shadowgraphy method and analyzed by the image processing technique. Error analysis is performed for the experiments, and the percentage of uncertainty for each parameter is reported. The experimental results are compared with the theoretical results. Also, Curves are proposed and plotted to predict changes in the behavior of atomization parameters. Diesel fuel has less viscosity than Mazut fuel. Diesel fuel has shorter breakup length, wavelength, liquid film thickness, and sature mean diameter than Mazut fuel at the same pressure. Diesel fuel has a larger spray angle and a larger discharge coefficient than Mazut fuel at the same pressure. As the pressure and temperature increase, fuel atomization improves. The viscosity of Mazut fuel is decreased by temperature increase. As the fuel injection pressure and temperature increase, breakup length, wavelength, liquid film thickness, and sature mean diameter decrease; also, spray angle increases.


Author(s):  
Hiroshi Kanno ◽  
Youngbae Han ◽  
Yusuke Saito ◽  
Naoki Shikazono

Heat transfer in micro scale two-phase flow attracts large attention since it can achieve large heat transfer area per density. At high quality, annular flow becomes one of the major flow regimes in micro two-phase flow. Heat is transferred by evaporation or condensation of the liquid film, which are the dominant mechanisms of micro scale heat transfer. Therefore, liquid film thickness is one of the most important parameters in modeling the phenomena. In macro tubes, large numbers of researches have been conducted to investigate the liquid film thickness. However, in micro tubes, quantitative information for the annular liquid film thickness is still limited. In the present study, annular liquid film thickness is measured using a confocal method, which is used in the previous study [1, 2]. Glass tubes with inner diameters of 0.3, 0.5 and 1.0 mm are used. Degassed water and FC40 are used as working fluids, and the total mass flux is varied from G = 100 to 500 kg/m2s. Liquid film thickness is measured by laser confocal displacement meter (LCDM), and the liquid-gas interface profile is observed by a high-speed camera. Mean liquid film thickness is then plotted against quality for different flow rates and tube diameters. Mean thickness data is compared with the smooth annular film model of Revellin et al. [3]. Annular film model predictions overestimated the experimental values especially at low quality. It is considered that this overestimation is attributed to the disturbances caused by the interface ripples.


Author(s):  
Dengshuai Guo ◽  
Xiaoming Kang ◽  
Xinyu Liu ◽  
Weiguo He

The characteristics of the propellant film on the tip surface of the field-emission electric propulsion thruster have a close relationship with the work state of the thruster. In this paper, the distributions of both the liquid film thickness and the fluid velocity along the needle tip have been calculated by building the liquid mechanics equations and a cone coordinate system suitable for the tip. The results show that the film thickness is tens to hundreds of nanometers and the fluid velocity along the needle tip is from tens of µm/s to a few mm/s.


2021 ◽  
Author(s):  
Huacheng Zhang ◽  
Tutomo Hisano ◽  
Shoji Mori ◽  
Hiroyuki Yoshida

Abstract Annular gas-liquid two-phase flows, such as the flows attached to the fuel rods of boiling water reactors (BWR), are a prevalent occurrence in industrial processes. At the gas-liquid interface of such flows, disturbance waves with diverse velocity and amplitude commonly arise. Since the thin liquid film between two successive disturbance waves leads to the dryout on the heating surface and limits the performance of the BWRs, complete knowledge of the disturbance waves is of great importance for the characterized properties of disturbance waves. The properties of disturbance waves have been studied by numerous researchers through extensive experimental and analytical approaches. However, most of the experimental data and analyses available in the literature are limited to the near atmospheric condition. In consideration of the properties of liquids and gases under atmospheric pressure which are distinct from those under BWR operating conditions (7 MPa, 285 °C), we employed the HFC134a gas and liquid ethanol whose properties at relatively low pressure and temperature (0.7 MPa, 40 °C) are similar to those of steam and water under BWR operating conditions as working fluids in a tubular test section having an inside diameter 5.0mm. Meanwhile, the liquid film thickness is measured by conductance probes. In this study, we report the liquid film thickness characteristics in a two-phase HFC134a gas-liquid ethanol flow. A simple model of the height of a disturbance wave was also proposed.


Sign in / Sign up

Export Citation Format

Share Document