scholarly journals A Modified Exact Reconstruction Algorithm to Determine the Complex Permittivity Perturbations of a Cancer Affected Biological Target using Microwave Tomography Technique

Author(s):  
Deborsi Basu ◽  
Kabita Purkait

Microwave Tomography Technique (MTT) is an emerging technology that is showing its effectiveness in detecting Cancer at early stage. Due to absolute random and non-deterministic characteristics of Cancer cells, more advancements are required in MTT to accurately detect the presence as well as the location of the affected region. Considering this fundamental issue, in this paper, we have proposed a modified Exact Reconstruction Algorithm (mERA) which is capable enough to provide a detailed analysis of all kinds of complex dielectric perturbations of a cancer affected biological target. In MTT, the detection of presence of a cancerous tumor inside any organ of human body has been done using different image reconstruction algorithms. On the other hand, this algorithm uses a selective data segregation mechanism to generate the perturbed complex cell permittivities of the affected organ tissues. Through this study, it has also been verified that how efficiently our proposed approach can able to detect all types of dielectric variations that may be large (20%), small (5%), positive or may be negative and even in a mixed kind of scenario where affected cells possess the mixture of all types of perturbations simultaneously. As cancerous cell shows peculiar behaviour inside human body and its nature varies from person to person and even in-between different stages (stage 1, stage 2, stage 3, stage 4) of cancer, the algorithm is designed in such a fashion that it can able to detect the presence of tumor considering all such possibilities into account. The results validate its high accuracy and effectiveness in the field of cancer diagnosis.


Author(s):  
Mohd Hafiz Fazalul Rahiman ◽  
Ruzairi Abdul Rahim ◽  
Herlina Abdul Rahim

Kertas ini membincangkan algoritma pembangunan imej bagi kegunaan dalam tomografi ultrasonik. Terdapat tiga jenis algoritma pembangunan iaitu Linear Back Projection, Hybrid Reconstruction dan Hybrid Binary Reconstruction. Algoritma tersebut telah diuji ke atas sistem tomografi ultrasonik berdasarkan kepada beberapa bayang yang telah dikenalpasti dan objek–objek sebenar. Prestasi algoritma tersebut telah di analisa dan bincangkan pada bahagian akhir kertas ini. Kata kunci: Algoritma pembangunan; tomografi ultrasonic; pemprosesan image; mabuk This paper presented image reconstruction algorithms for use in ultrasonic tomography. There are three types of reconstruction algorithms namely Linear Back Projection, Hybrid Reconstruction and Hybrid Binary Reconstruction. The algorithms have been evaluated on ultrasonic tomography system based on several known phantoms and real objects. The performance of the algorithms have been analysed and discussed at the end of the paper. Key words: Reconstruction algorithm; ultrasonic tomography; image processing





Author(s):  
L. Vacca-Galloway ◽  
Y.Q. Zhang ◽  
P. Bose ◽  
S.H. Zhang

The Wobbler mouse (wr) has been studied as a model for inherited human motoneuron diseases (MNDs). Using behavioral tests for forelimb power, walking, climbing, and the “clasp-like reflex” response, the progress of the MND can be categorized into early (Stage 1, age 21 days) and late (Stage 4, age 3 months) stages. Age-and sex-matched normal phenotype littermates (NFR/wr) were used as controls (Stage 0), as well as mice from two related wild-type mouse strains: NFR/N and a C57BI/6N. Using behavioral tests, we also detected pre-symptomatic Wobblers at postnatal ages 7 and 14 days. The mice were anesthetized and perfusion-fixed for immunocytochemical (ICC) of CGRP and ChAT in the spinal cord (C3 to C5).Using computerized morphomety (Vidas, Zeiss), the numbers of IR-CGRP labelled motoneurons were significantly lower in 14 day old Wobbler specimens compared with the controls (Fig. 1). The same trend was observed at 21 days (Stage 1) and 3 months (Stage 4). The IR-CGRP-containing motoneurons in the Wobbler specimens declined progressively with age.



Author(s):  
Santosh Bhattacharyya

Three dimensional microscopic structures play an important role in the understanding of various biological and physiological phenomena. Structural details of neurons, such as the density, caliber and volumes of dendrites, are important in understanding physiological and pathological functioning of nervous systems. Even so, many of the widely used stains in biology and neurophysiology are absorbing stains, such as horseradish peroxidase (HRP), and yet most of the iterative, constrained 3D optical image reconstruction research has concentrated on fluorescence microscopy. It is clear that iterative, constrained 3D image reconstruction methodologies are needed for transmitted light brightfield (TLB) imaging as well. One of the difficulties in doing so, in the past, has been in determining the point spread function of the system.We have been developing several variations of iterative, constrained image reconstruction algorithms for TLB imaging. Some of our early testing with one of them was reported previously. These algorithms are based on a linearized model of TLB imaging.



Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1209
Author(s):  
Gabriel Keller ◽  
Simon Götz ◽  
Mareen Sarah Kraus ◽  
Leonard Grünwald ◽  
Fabian Springer ◽  
...  

This study analyzed the radiation exposure of a new ultra-low dose (ULD) protocol compared to a high-quality (HQ) protocol for CT-torsion measurement of the lower limb. The analyzed patients (n = 60) were examined in the period March to October 2019. In total, 30 consecutive patients were examined with the HQ and 30 consecutive patients with the new ULD protocol comprising automatic tube voltage selection, automatic exposure control, and iterative image reconstruction algorithms. Radiation dose parameters as well as the contrast-to-noise ratio (CNR) and diagnostic confidence (DC; rated by two radiologists) were analyzed and potential predictor variables, such as body mass index and body volume, were assessed. The new ULD protocol resulted in significantly lower radiation dose parameters, with a reduction of the median total dose equivalent to 0.17 mSv in the ULD protocol compared to 4.37 mSv in the HQ protocol (p < 0.001). Both groups showed no significant differences in regard to other parameters (p = 0.344–0.923). CNR was 12.2% lower using the new ULD protocol (p = 0.033). DC was rated best by both readers in every HQ CT and in every ULD CT. The new ULD protocol for CT-torsion measurement of the lower limb resulted in a 96% decrease of radiation exposure down to the level of a single pelvic radiograph while maintaining good image quality.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Johan Economou Lundeberg ◽  
Jenny Oddstig ◽  
Ulrika Bitzén ◽  
Elin Trägårdh

Abstract Background Lung cancer is one of the most common cancers in the world. Early detection and correct staging are fundamental for treatment and prognosis. Positron emission tomography with computed tomography (PET/CT) is recommended clinically. Silicon (Si) photomultiplier (PM)-based PET technology and new reconstruction algorithms are hoped to increase the detection of small lesions and enable earlier detection of pathologies including metastatic spread. The aim of this study was to compare the diagnostic performance of a SiPM-based PET/CT (including a new block-sequential regularization expectation maximization (BSREM) reconstruction algorithm) with a conventional PM-based PET/CT including a conventional ordered subset expectation maximization (OSEM) reconstruction algorithm. The focus was patients admitted for 18F-fluorodeoxyglucose (FDG) PET/CT for initial diagnosis and staging of suspected lung cancer. Patients were scanned on both a SiPM-based PET/CT (Discovery MI; GE Healthcare, Milwaukee, MI, USA) and a PM-based PET/CT (Discovery 690; GE Healthcare, Milwaukee, MI, USA). Standardized uptake values (SUV) and image interpretation were compared between the two systems. Image interpretations were further compared with histopathology when available. Results Seventeen patients referred for suspected lung cancer were included in our single injection, dual imaging study. No statically significant differences in SUVmax of suspected malignant primary tumours were found between the two PET/CT systems. SUVmax in suspected malignant intrathoracic lymph nodes was 10% higher on the SiPM-based system (p = 0.026). Good consistency (14/17 cases) between the PET/CT systems were found when comparing simplified TNM staging. The available histology results did not find any obvious differences between the systems. Conclusion In a clinical setting, the new SiPM-based PET/CT system with a new BSREM reconstruction algorithm provided a higher SUVmax for suspected lymph node metastases compared to the PM-based system. However, no improvement in lung cancer detection was seen.



Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 164
Author(s):  
Dongxu Wu ◽  
Fusheng Liang ◽  
Chengwei Kang ◽  
Fengzhou Fang

Optical interferometry plays an important role in the topographical surface measurement and characterization in precision/ultra-precision manufacturing. An appropriate surface reconstruction algorithm is essential in obtaining accurate topography information from the digitized interferograms. However, the performance of a surface reconstruction algorithm in interferometric measurements is influenced by environmental disturbances and system noise. This paper presents a comparative analysis of three algorithms commonly used for coherence envelope detection in vertical scanning interferometry, including the centroid method, fast Fourier transform (FFT), and Hilbert transform (HT). Numerical analysis and experimental studies were carried out to evaluate the performance of different envelope detection algorithms in terms of measurement accuracy, speed, and noise resistance. Step height standards were measured using a developed interferometer and the step profiles were reconstructed by different algorithms. The results show that the centroid method has a higher measurement speed than the FFT and HT methods, but it can only provide acceptable measurement accuracy at a low noise level. The FFT and HT methods outperform the centroid method in terms of noise immunity and measurement accuracy. Even if the FFT and HT methods provide similar measurement accuracy, the HT method has a superior measurement speed compared to the FFT method.



2021 ◽  
Vol 29 ◽  
pp. 297-309
Author(s):  
Xiaohui Chen ◽  
Wenbo Sun ◽  
Dan Xu ◽  
Jiaojiao Ma ◽  
Feng Xiao ◽  
...  

BACKGROUND: Computed tomography (CT) imaging combined with artificial intelligence is important in the diagnosis and prognosis of lung diseases. OBJECTIVE: This study aimed to investigate temporal changes of quantitative CT findings in patients with COVID-19 in three clinic types, including moderate, severe, and non-survivors, and to predict severe cases in the early stage from the results. METHODS: One hundred and two patients with confirmed COVID-19 were included in this study. Based on the time interval between onset of symptoms and the CT scan, four stages were defined in this study: Stage-1 (0 ∼7 days); Stage-2 (8 ∼ 14 days); Stage-3 (15 ∼ 21days); Stage-4 (> 21 days). Eight parameters, the infection volume and percentage of the whole lung in four different Hounsfield (HU) ranges, ((-, -750), [-750, -300), [-300, 50) and [50, +)), were calculated and compared between different groups. RESULTS: The infection volume and percentage of four HU ranges peaked in Stage-2. The highest proportion of HU [-750, 50) was found in the infected regions in non-survivors among three groups. CONCLUSIONS: The findings indicate rapid deterioration in the first week since the onset of symptoms in non-survivors. Higher proportion of HU [-750, 50) in the lesion area might be a potential bio-marker for poor prognosis in patients with COVID-19.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert Peter Reimer ◽  
Konstantin Klein ◽  
Miriam Rinneburger ◽  
David Zopfs ◽  
Simon Lennartz ◽  
...  

AbstractComputed tomography in suspected urolithiasis provides information about the presence, location and size of stones. Particularly stone size is a key parameter in treatment decision; however, data on impact of reformatation and measurement strategies is sparse. This study aimed to investigate the influence of different image reformatations, slice thicknesses and window settings on stone size measurements. Reference stone sizes of 47 kidney stones representative for clinically encountered compositions were measured manually using a digital caliper (Man-M). Afterwards stones were placed in a 3D-printed, semi-anthropomorphic phantom, and scanned using a low dose protocol (CTDIvol 2 mGy). Images were reconstructed using hybrid-iterative and model-based iterative reconstruction algorithms (HIR, MBIR) with different slice thicknesses. Two independent readers measured largest stone diameter on axial (2 mm and 5 mm) and multiplanar reformatations (based upon 0.67 mm reconstructions) using different window settings (soft-tissue and bone). Statistics were conducted using ANOVA ± correction for multiple comparisons. Overall stone size in CT was underestimated compared to Man-M (8.8 ± 2.9 vs. 7.7 ± 2.7 mm, p < 0.05), yet closely correlated (r = 0.70). Reconstruction algorithm and slice thickness did not significantly impact measurements (p > 0.05), while image reformatations and window settings did (p < 0.05). CT measurements using multiplanar reformatation with a bone window setting showed closest agreement with Man-M (8.7 ± 3.1 vs. 8.8 ± 2.9 mm, p < 0.05, r = 0.83). Manual CT-based stone size measurements are most accurate using multiplanar image reformatation with a bone window setting, while measurements on axial planes with different slice thicknesses underestimate true stone size. Therefore, this procedure is recommended when impacting treatment decision.



2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Hsuan-Ming Huang ◽  
Ing-Tsung Hsiao

Background and Objective. Over the past decade, image quality in low-dose computed tomography has been greatly improved by various compressive sensing- (CS-) based reconstruction methods. However, these methods have some disadvantages including high computational cost and slow convergence rate. Many different speed-up techniques for CS-based reconstruction algorithms have been developed. The purpose of this paper is to propose a fast reconstruction framework that combines a CS-based reconstruction algorithm with several speed-up techniques.Methods. First, total difference minimization (TDM) was implemented using the soft-threshold filtering (STF). Second, we combined TDM-STF with the ordered subsets transmission (OSTR) algorithm for accelerating the convergence. To further speed up the convergence of the proposed method, we applied the power factor and the fast iterative shrinkage thresholding algorithm to OSTR and TDM-STF, respectively.Results. Results obtained from simulation and phantom studies showed that many speed-up techniques could be combined to greatly improve the convergence speed of a CS-based reconstruction algorithm. More importantly, the increased computation time (≤10%) was minor as compared to the acceleration provided by the proposed method.Conclusions. In this paper, we have presented a CS-based reconstruction framework that combines several acceleration techniques. Both simulation and phantom studies provide evidence that the proposed method has the potential to satisfy the requirement of fast image reconstruction in practical CT.



Sign in / Sign up

Export Citation Format

Share Document