Complex Harmonic Wavelet Analysis of a General Rotor System with a Breathing Crack

2018 ◽  
Vol 42 (12) ◽  
pp. 1043-1051
Author(s):  
Dong Ju Han
2011 ◽  
Vol 143-144 ◽  
pp. 613-617
Author(s):  
Shuang Xi Jing ◽  
Yong Chang ◽  
Jun Fa Leng

Harmonic wavelet function, with the strict box-shaped characteristic of spectrum, has strong ability of identifying signal in frequency domain, and can extract weak components form vibration signals in frequency domain. Using harmonic wavelet analysis method, the selected frequency region and other frequency components of vibration signal of mine ventilator were decomposed into independent frequency bands without any over-lapping or leaking. Simulation and diagnosis example show that this method has good fault diagnosis effect, and the ventilator fault is diagnosed successfully.


2019 ◽  
Vol 255 ◽  
pp. 02011
Author(s):  
Ahmed M. Abdelrhman ◽  
M. Salman Leong ◽  
Y.H. Ali ◽  
Iftikhar Ahmad ◽  
Christina G. Georgantopoulou ◽  
...  

This paper studies the diagnosis of twisted blade in a multi stages rotor system using adapted wavelet transform and casing vibration. The common detection method (FFT) is effective only if sever blade faults occurred while the minor faults usually remain undetected. Wavelet analysis as alternative technique is still unable to fulfill the fault detection and diagnosis accurately due to its inadequate time-frequency resolution. In this paper, wavelet is adapted and its time-frequency is improved. Experimental study was undertaken to simulate multi stages rotor system. Results showed that the adapted wavelet analysis is effective in twisted blade diagnosis compared to the conventional one.


2001 ◽  
Vol 2001.39 (0) ◽  
pp. 289-290
Author(s):  
Noriaki SADAKIYO ◽  
Naoya YATUDUKA ◽  
Kazuyoshi FUKUDA ◽  
Yasuhide TAKAHASHI

Author(s):  
Berrak Teymur ◽  
S. P. Gopal Madabhushi

Abstract This paper presents techniques which employ frequency response and wavelet analysis to identify damage in soils. Experimental data is obtained by dynamic centrifuge modeling. Dynamic centrifuge model experiments generate complex data. Harmonic wavelet analysis provides a good way to analyse them. In this paper the experimental technique will be explained along with typical time-frequency maps. With harmonic wavelet analysis, the signal features that cannot be observed from classical Fourier analysis were seen. Harmonic wavelet analysis provide a new insight into the boundary effects in the Equivalent Shear Beam (ESB) model container used in the experimental work.


Author(s):  
J. Zhao ◽  
H. A. DeSmidt ◽  
M. Peng ◽  
W. Yao

A new rotor model is developed in this paper to explore the dynamic coupling effect of roll-yaw motion. The rotor model employs a 6 degree-of-freedom Jeffcott rotor with a breathing crack. Based on the energy method and Lagrange principle, equation of motion is derived in yawing coordinate system with consideration of unbalance mass. The breathing crack model is established by Zero Stress Intensity Factor (SIF) method based on the crack released strain energy concept in fracture mechanics. SIF method is used to determine the crack closure line by computing SIF for opening mode. The vibration responses of the cracked rotor system are solved by Gear’s method. The coupling effect of yawing and rolling motion is studied in this paper to investigate vibration response of cracked rotor system. With the yawing motion, the dynamics of the rotor-bearing system is changed by additional stiffness and force terms. The parametric study is conducted to analyze the effect of yawing rate and acceleration on the crack breathing behavior. Finally, the vibration responses of the nominal and damaged rotor systems are analyzed to find out the indication for the damage detection and health monitoring.


Author(s):  
Zhaoli Zheng ◽  
Zixuan Li ◽  
Di Zhang ◽  
Yonghui Xie ◽  
Zheyuan Zhang

Abstract The nonlinear breathing crack behaviors and anisotropy of the bearing are important sources of severe vibration of rotor systems. However, the rotor system considering both of these factors has not gained sufficient attention in the existing studies. In this paper, the nonlinear dynamics of such anisotropic breathing cracked rotor system is investigated based on three-dimensional finite element model (FEM). Firstly, the equations of motion of the rotor system are established in the rotating frame to facilitate the modeling of the breathing crack. The fixed-interface component mode synthesis (CMS) is used to reduce the system’s degrees of freedom (DOFs). Then, in the process of solving the equations by harmonic balance method (HBM) and Newton-Raphson method, an original method for fast calculating tangent stiffness matrix is proposed. Finally, the effects of the crack depth, the anisotropy of bearing and relative angle between bearings on the nonlinear dynamics of the system are studied. The results show that the breathing behavior will complicate the vibration and introduce additional transverse stiffness. The increase of crack depth will deteriorate the vibration. The anisotropy and relative angle of bearing will lead to the splitting and merging of the resonant peaks, respectively.


Sign in / Sign up

Export Citation Format

Share Document