Numerical Implementation and Indentation Ratcheting Finite Element Analysis of a Modified Chaboche Kinematic Hardening Model

Author(s):  
Jungmoo Han ◽  
Karuppasamy Pandian Marimuthu ◽  
Hyungyil Lee
2012 ◽  
Vol 249-250 ◽  
pp. 927-930
Author(s):  
Ze Yu Wu ◽  
Xin Li Bai ◽  
Bing Ma

In finite element calculation of plastic mechanics, isotropic hardening model, kinematic hardening model and mixed hardening model have their advantages and disadvantages as well as applicability area. In this paper, by use of the tensor analysis method and mixed hardening theory in plastic mechanics, the constitutive relation of 3-D mixed hardening problem is derived in detail based on the plane mixed hardening. Numerical results show that, the proposed 3-D mixed hardening constitutive relation agrees well with the test results in existing references, and can be used in the 3-D elastic-plastic finite element analysis.


1998 ◽  
Vol 120 (2) ◽  
pp. 143-148 ◽  
Author(s):  
N. Huber ◽  
Ch. Tsakmakis

Using the Finite Element Method, an analysis is given of the indentation of an elasticplastic half-space by a rigid sphere. In particular, attention is focused on the effect of hardening rules on the material response. The materials considered are supposed to exhibit isotropic and kinematic hardening. Moreover, it is shown that the possibility of similar behavior due to effects of friction can be ruled out.


2008 ◽  
Vol 392-394 ◽  
pp. 980-984 ◽  
Author(s):  
Y. Sha ◽  
Hui Tang ◽  
Jia Zhen Zhang

In this paper, a detailed elastic-plastic finite element analysis of the effect of the compressive loading on crack tip plasticity is studied based on the material’s kinematic hardening model. Five centre-cracked panel specimens with different crack lengths are analyzed. The analysis shows that in a tension-compression loading the maximum spread of the crack tip reverse plastic zone increases with the increase of the compressive stress and the near crack tip opening displacement decreases with the increase of the compressive stress at the same nominal stress intensity factor. The applied compressive stress is the main factor controlling the near crack tip parameters.


1999 ◽  
Vol 123 (1) ◽  
pp. 20-27 ◽  
Author(s):  
Chulho Yang ◽  
Ashok V. Kumar

Single crystals of NiAl are very ductile at intermediate temperatures (400–700 K) and were observed to exhibit high strain hardening rates at large strains when loaded in the [110] orientation. The experimentally observed strain hardening in NiAl single crystals could not be predicted using simple hardening models and two-dimensional finite element analysis. The primary slip systems that activate during the deformation are (010)[100] and (100)[100], however, it has been hypothesized that activation of secondary slip on {011} slip planes may be responsible for the high rate of hardening observed. The hardening of intermetallic single crystals when multiple slip systems are activated is not well understood. To study this further, a three-dimensional hardening model and constitutive equations were implemented into a finite element analysis program. Since the parameters required to describe the hardening model such as latent hardening ratios are difficult to obtain experimentally, a parametric study was conducted to estimate values for these parameters that enable the prediction of the experimentally observed load versus elongation curves.


1999 ◽  
Vol 122 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Jiaxin Zhao ◽  
Farshid Sadeghi ◽  
Harvey M. Nixon

During start up and shut down of heavily loaded rolling/sliding contacts, the lubricant film separating the surfaces is extremely thin and not fully developed. The load is supported by both the solid and the lubricant. Under extreme conditions, there is no lubricant film and the load is solely supported by the solid contact. However, when surface pockets are engineered on the surface of rolling/sliding elements, lubricant can be trapped in the pockets and deform with the pockets. Finite element analysis [FEA] of the deformation of a single empty pocket indicates that the volume of the pocket significantly decreases under an applied load. Therefore, when the pocket is filled with a lubricant, the lubricant will undergo significant compression. This compression enables lubricant to support part of the load and provide beneficial effects, such as reducing friction and expelling the lubricant during start up and shut down. This research presents an FEA model of a rigid cylinder in contact with an elastic and/or elastic-linear-kinematic-hardening-plastic half space with lubricant filled surface pocket(s). Results of lubricant filled pockets are compared with those of empty pockets. The results demonstrate the beneficial effects of load sharing mechanism by the lubricant. [S0742-4787(00)00801-8]


Sign in / Sign up

Export Citation Format

Share Document