Adaptive Sliding Mode Observer with an Adaptation Rule for the Injection Term for Disturbance Estimation Based on Robust Finite-Time Stability

2020 ◽  
Vol 44 (8) ◽  
pp. 539-548
Author(s):  
Tae Jun Song ◽  
Jong Min Lee ◽  
Kwang Seok Oh ◽  
Kyong Su Yi
Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 111
Author(s):  
You Li ◽  
Haizhao Liang

Robust finite-time control algorithms for satellite attitude maneuvers are proposed in this paper. The standard sliding mode is modified, hence the inherent robustness could be maintained, and this fixed sliding mode is modified to dynamic, therefore the finite-time stability could be achieved. First, the finite -time sliding mode based on attitude quaternion is proposed and the loose finite-time stability is achieved by enlarging the sliding mode parameter. In order to get the strict finite-time stability, a sliding mode based on the Euler axis is then given. The fixed norm property of the Euler axis is used, and a sliding mode parameter without singularity issue is achieved. System performance near the equilibrium point is largely improved by the proposed sliding modes. The singularity issue of finite-time control is solved by the property of rotation around a fixed axis. System finite-time stability and robustness are analyzed by the Lyapunov method. The superiority of proposed controllers and system robustness to some typical perturbations such as disturbance torque, model uncertainty and actuator error are demonstrated by simulation results.


Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei

Abstract In this article, a new technique to design a robust controller to achieve finite-time partial stabilization for a class of nonlinear perturbed systems is proposed. Indeed the system is partially stabilized in a finite time, based on the novel concept of the nonsingular terminal sliding mode (TSM) control method. In the first step, the nonlinear dynamical system is divided into two subsystems based on their required stability properties of the system's states (where finite-time stability is only desired for the first subsystem). Then, using a partial diffeomorphism map to transform the first subsystem into the normal form, the control law is designed. Indeed, by introducing this new concept of the TSM method, robust finite-time stability of only a part of the system's state is guaranteed. Subsequently, simulation results demonstrate the effectiveness of the proposed method, and the results are compared with the existing methods.


Author(s):  
Bin Wang ◽  
Yangquan Chen ◽  
Ying Yang

Abstract This paper studies the chattering-free finite-time control for a class of fractional-order nonlinear systems. First, a class of fractional-order nonlinear systems with external disturbances is presented. Second, a new finite-time terminal sliding mode control method is proposed for the stability control of a class of fractional-order nonlinear systems by combining the finite-time stability theory and sliding mode control scheme. Third, by designing a controller with a differential form and introducing the arc tangent function, the chattering phenomenon is well suppressed. Additionally, a controller is developed to resist external disturbances. Finally, numerical simulations are implemented to demonstrate the feasibility and validity of the proposed method.


Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 315
Author(s):  
Yuxiao Niu ◽  
Hanyu Ban ◽  
Haichao Zhang ◽  
Wenquan Gong ◽  
Fang Yu

In this work, a tracking control strategy is developed to achieve finite-time stability of quadrotor Unmanned Aerial Vehicles (UAVs) subject to external disturbances and parameter uncertainties. Firstly, a finite-time extended state observer (ESO) is proposed based on the nonsingular terminal sliding mode variable to estimate external disturbances to the position subsystem. Then, utilizing the information provided by the ESO and the nonsingular terminal sliding mode control (NTSMC) technique, a dynamic surface controller is proposed to achieve finite-time stability of the position subsystem. By conducting a similar step for the attitude subsystem, a finite-time ESO-based dynamic surface controller is proposed to carry out attitude tracking control of the quadrotor UAV. Finally, the performance of the control algorithm is demonstrated via a numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document