Frequency Characteristics of Fluctuating Velocity According to Flow Rates in a Tip Leakage Vortex and a Wake Flow in an Axial Flow Fan

2004 ◽  
Vol 28 (2) ◽  
pp. 181-188
Author(s):  
Xiaocheng Zhu ◽  
Wanlai Lin ◽  
Zhaohui Du ◽  
Yan Zhao

The three-dimensional flow field in the tip region of an isolated axial flow fan rotor with two different tip clearances are investigated using a three-color, dual-beam PDA system (Particle Doppler Anemometer, DANTEC Measurement Technology). The global performance is also obtained, and is compared favorably with CFD (Computational Fluid Dynamics) modeling of this fan flow at a zero tip clearance. The detailed flow field measurements are taken at 15 axial locations upstream, inside and at the exit of the rotor. In the radial direction, 15 measurement locations are arranged from 50% of the blade span to the casing wall, mainly focusing on the tip region from 90% of the blade span location to the casing wall (about 10 measurement locations). The PDA data has provided a quantitative understanding of the flow phenomena in the tip region of the fan rotor. For both tip clearances, it has been observed that the tip leakage flow rolls up into a tip leakage vortex. Due to the rotation of the rotor, this tip leakage vortex moves away from the suction surface of the fan blade. A reverse flow is induced in the main flow passage because of the tip leakage vortex. The depth and extent of the tip leakage vortex grow noticeably with the increase of the tip clearance.


Author(s):  
Takahiro Nishioka ◽  
Shuuji Kuroda ◽  
Tsukasa Nagano ◽  
Hiroshi Hayami

An experimental study was conducted to investigate the inception patterns of rotating stall at different rotor blade stagger-angle settings with the aim of extending the stable operating range for a variable-pitch axial-flow fan. Pressure and velocity fluctuations were measured for a low-speed axial-flow fan with a relatively large tip clearance. Two stagger-angle settings were tested, the design setting, and a high setting which was 10 degrees greater than the design setting. Rotating instability (RI) was first observed near the peak pressure-rise point at both settings. It propagated in the rotation direction at about 40 to 50% of the rotor rotation speed, and its wavelength was about one rotor-blade pitch. However, the stall-inception patterns differed between the two settings. At the design stagger-angle setting, leading edge separation occurred near the stall-inception point, and this separation induced a strong tip leakage vortex that moved upstream of the rotor. This leakage vortex simultaneously induced a spike and a RI. The conditions for stall inception were consistent with the simple model of the spike-type proposed by Camp and Day. At the high stagger-angle setting, leading edge separation did not occur, and the tip leakage vortex did not move upstream of the rotor. Therefore, a spike did not appear although RI developed at the maximum pressure-rise point. This RI induced a large end-wall blockage that extended into the entire blade passage downstream of the rotor. This large blockage rapidly increased the rotor blade loading and directly induced a long length-scale stall cell before a spike or modal disturbance appeared. The conditions for stall inception were not consistent with the simple models of the spike or modal-type. These findings indicate that the movement of the tip leakage vortex associated with the rotor blade loading affects the development of a spike and RI and that the inception pattern of a rotating stall depends on the stagger-angle setting of the rotor blades.


2004 ◽  
Vol 127 (2) ◽  
pp. 322-329 ◽  
Author(s):  
C.-M. Jang ◽  
D. Sato ◽  
T. Fukano

The flow characteristics in the blade passage and in the wake region of a low-speed axial flow fan have been investigated by experimental analysis using a rotating hot-wire sensor and a five-hole probe for design and off-design operating conditions. The results show that the tip leakage vortex is moved upstream when the flow rate is decreased, thus disturbing the formation of wake flow near the rotor tip. That is, the tip leakage vortex interfaces with the blade suction surface and results in high velocity fluctuation near the blade suction surface. From axial velocity distributions downstream of the fan rotor, large axial velocity decay near the rotor tip is observed at near-stall condition, which results in a large blockage compared to that at the design condition. Finally, the wake flow downstream of the rotor blade is clearly measured at the design and off-design conditions. However, the trough of the high velocity fluctuation due to Karmann vortex street in the wake flow is observed at a higher flow condition than the design flow rate.


Author(s):  
Desheng Zhang ◽  
Weidong Shi ◽  
Suqing Wu ◽  
Dazhi Pan ◽  
Peipei Shao ◽  
...  

In this paper, the tip leakage vortex (TLV) structures in an axial flow pump were investigated by numerical and experimental methods. Based on the comparisons of different blade tip clearance size (i.e., 0.5 mm, 1mm and 1.5mm) and different flow rate conditions, TLV trajectories were obtained by Swirling Strength method, and simulated by modified SST k-ω turbulence model with refined high-quality structured grids. A high-speed photography test was carried out to capture the tip leakage vortex cavitation in an axial flow pump with transparent casing. Numerical results were compared with the experimental leakage vortex trajectories, and a good agreement is presented. The detailed trajectories show that the start point of tip leakage vortex appears near the leading edge at small flow rate, and it moves from trailing edge to about 30% chord span at rated flow rate. At the larger flow rate condition, the starting point of TLV shifts to the middle of chord, and the direction of TLV moves parallel to the blade hydrofoil. As the increasing of the tip size, the start point of TLV trajectories moves to the central of chord and the minimum pressure in vortex core is gradually reduced.


Sign in / Sign up

Export Citation Format

Share Document