An Experimental Study on the Lift-off Behavior of Tone-Excited Propane Non-premixed Jet Flames

2004 ◽  
Vol 28 (5) ◽  
pp. 569-579 ◽  
2019 ◽  
Vol 235 ◽  
pp. 641-652 ◽  
Author(s):  
Wenjun Zhong ◽  
Tamilselvan Pachiannan ◽  
Zhixia He ◽  
Tiemin Xuan ◽  
Qian Wang

Fuel ◽  
2021 ◽  
Vol 287 ◽  
pp. 119534
Author(s):  
M. Zamani ◽  
E. Abbasi-Atibeh ◽  
S. Mobaseri ◽  
H. Ahsan ◽  
A. Ahsan ◽  
...  

Fuel ◽  
2016 ◽  
Vol 183 ◽  
pp. 164-169 ◽  
Author(s):  
C.F. Tao ◽  
Y. Shen ◽  
R.W. Zong ◽  
F. Tang

1998 ◽  
Vol 120 (2) ◽  
pp. 161-166 ◽  
Author(s):  
S. R. Gollahalli

An experimental study conducted to determine the effects of lifting the flame base off the burner rim on the differences between the flame characteristics of diffusion flames from circular and elliptic burners is presented. The in-flame profiles of temperature, concentrations of fuel and combustion product species, and the mean and fluctuating components of axial velocity are presented. This study has shown that the effects of burner geometry in turbulent lifted flames are considerable only in the near-burner region. In the midflame and far-burner regions, the effects traceable to burner geometry are much weaker, contrary to those observed in the attached flame configuration. The observations are attributed to the turbulence and additional air entrainment into the jet prior to the flame base accompanying the lift-off process, which mitigate the effects of burner geometry.


1989 ◽  
Vol 22 (1) ◽  
pp. 825-831 ◽  
Author(s):  
A.D. Birch ◽  
G.K. Hargrave
Keyword(s):  
Gas Jet ◽  

2021 ◽  
Author(s):  
Mohammed A. Gandhi

An experimental study was conducted to investigate the film cooling effectiveness of a few configurations of short injection holes: single row, double row and both of the preceding cases with an upstream ramp placed at two different locations. In order to perform the above study, a wind-tunnel facility was assembled to facilitate in the successful culmination of the experiments. The focus of the study was to determine the cooling provided by the short injection holes at a variety of blowing ratios and whether adding an extra row of holes, upstream of the first row would make a difference. For the second part, a ramp was placed upstream of the single and double row configuration to help improve cooling . All of the experiments were performed in a low speed wind-tunnel with a mainstream velocity of 8 m/s and a turbulence insity of 3.3%. Higher blowing ratios were ineffective in improving film-cooling effectiveness due to jet lift-off. Two rows of holes increased the cooling effectiveness by 200%, when compared to single row configurations at the same blowing ratio without ramps. Upstream ramps provided significant improvement in the near hole region of the injection holes.


2021 ◽  
Author(s):  
Mohammed A. Gandhi

An experimental study was conducted to investigate the film cooling effectiveness of a few configurations of short injection holes: single row, double row and both of the preceding cases with an upstream ramp placed at two different locations. In order to perform the above study, a wind-tunnel facility was assembled to facilitate in the successful culmination of the experiments. The focus of the study was to determine the cooling provided by the short injection holes at a variety of blowing ratios and whether adding an extra row of holes, upstream of the first row would make a difference. For the second part, a ramp was placed upstream of the single and double row configuration to help improve cooling . All of the experiments were performed in a low speed wind-tunnel with a mainstream velocity of 8 m/s and a turbulence insity of 3.3%. Higher blowing ratios were ineffective in improving film-cooling effectiveness due to jet lift-off. Two rows of holes increased the cooling effectiveness by 200%, when compared to single row configurations at the same blowing ratio without ramps. Upstream ramps provided significant improvement in the near hole region of the injection holes.


Author(s):  
Shuichi Torii

Experimental and numerical study is performed on subsonic hydrogen jet diffusion flame formed from the vertical circular nozzle. Emphasis is placed on the effect of the cavity height formed at the fuel injection nozzle tip on suppression of the flame lift-off. It is found that (i) an increase in the cavity height triggers and enhances a vacuum pressure, (ii) the air from the surroundings is transported naturally into the cavity to replenish the air entrained and consumed by the jet flame, and (iii) the vacuum pressure results in the mitigation of flame lift-off propensity.


Sign in / Sign up

Export Citation Format

Share Document