Analysis of experience in assessing the extent of full-scale testing of anti-aircraft missile products during development and modernization

Author(s):  
V. V. Doronin

The paper focuses on the approach to assessing the number of launches of anti-aircraft missile products at various stages of full-scale tests required for the implementation of development work. We analyzed the approach to determining the extent of flight tests using the practical experience of the “MKB” Fakel” of 1960s. Furthermore, we proposed a method for estimating the cost of the experimental stage of development work

Author(s):  
Hans Olav Knagenhjelm ◽  
Oddvin O̸rjasæter ◽  
Per J. Haagensen

The Ormen Lange offshore pipelines from shore to the field go through very difficult terrain creating freespans in the range 40–80m for the 30” lines. For the 6” lines long freespans will be present prior to burial and vortex induced vibrations (VIV) will give a contribution during laying due to strong currents. Using existing codes for fatigue calculation was giving too conservative results compared to the welding technology used and experience from SCR work showed that better S-N data should be expected. A dedicated program was started as part of the Ormen Lange (OL) technology verification program overseen by Norwegian Authorities. An overview of the results is presented here. A full evaluation of the data is not yet complete. Papers will be published later presenting the full technical details and dataprocessing. Fatigue test results from the OL pipeline fatigue verification are presented focusing on the following topics: • Defect sizes in pipeline production welds; • Contractor-A: 5G welding position; • Contractor-B: 2G welding position; • 6” pipe full scale testing; • 30” pipe full scale testing; • Residual stresses; • Crack growth tests and sector specimen fatigue tests in production environments. The following are a summary of the main test variables in the program: • Mapping of actual welding defects compared to AUT results. • Welds with varying misalignment (high/low) and lack of penetration (LOP) from installation contractors tested in air. • Welds with natural welding defects in internal environment (Condensed water and formation water). • Welds with notches made by electrical discharge machining (EDM) (2×65mm and 2×15mm) in internal environment (condensed water and formation water). • Crack growth tests using large compact tension (CT) specimens in air, seawater and internal product environments (condensed water and formation water). • Full scale tests including worst case high/low, LOPs, and tests with normal welds including repair welds. The following main conclusions can be drawn from the work: • Small scale testing with representative worst case defects predicts well large scale testing results with the same features when the small scale specimen stresses are corrected for bending moments etc. arising from the cutout of the pipe. • Full scale testing of 30”×35.5mm wall thickness 2G pipes welded continuously (without start/stop) with worst case defects and high/low exceeds the D curve. • Full-scale tests of 30”×35.5mm wall thickness 5G non continuous welds with worst case defects and high/low exceeds the E curve. • Pipe welds showed low or even compressive residual stresses in the root. For continuously welded pipes the stress levels were low but more varying, also on the cap side. This partly explains the good results. • It is verified that the fatigue loads during operation are below the threshold of crack growth, and thus fatigue will not be a probable failure mechanism. This is under the condition that the measurements of vortex induced vibrations (VIV) during operation confirm the engineering calculations.


1925 ◽  
Vol 29 (175) ◽  
pp. 299-332
Author(s):  
D. W. Taylor

Aeronautics now covers a large field. The bibliography alone, compiled and published annually by the United States National Advisory Committee for Aeronautics, requires something like two hundred pages of a book seven inches by ten inches. Needless to say, I am not undertaking to review the whole field.Owing to the difficulties of conducting free flight tests of performance and the fact that we cannot afford to make many mistakes in an appliance whose operation involves the risk of human life, it is peculiarly desirable that we may be able to predict the performance of the completed airplane from small-scale experiments; and probably in no other branch of mechanical science have we at present so many research laboratories.


2019 ◽  
Vol 97 ◽  
pp. 05017
Author(s):  
Khasanov Bakhriddin ◽  
Azimov Azam ◽  
Djurabekov Alisher

This article is devoted to methods analysis and systems for maintaining the forebay operating modes of pumping stations, which the minimum cost of resources is provided. In modern conditions there is a need to implement measures and solutions to improve the operational performance of pumping stations, which would lead to a decrease in the cost of water supplied. Such activities include the development of methods and systems for the management and maintenance of stations operating modes, which provide the minimum cost of resources. Based on observations, the uneven operation of pumping units over time and as a result of imperfect design of advance cells, the design hydraulic indicators of flow and operational parameters of pumping stations deteriorate. The relevance hydraulic research of forebay regimes and water intakes indicated at a number of meetings on pumps quality. With the development of the recommended set of measures, it is possible to save water and energy resources. The purpose of the work was to conduct full-scale testing of forebay on a large pumping stations in operation, to develop a new design of forebay and its hydraulic calculation. During work performing, energy-hydraulic methods for determining the parameters of pumping units were used.


Author(s):  
Doug P. Fairchild ◽  
Svetlana Shafrova ◽  
Huang Tang ◽  
Justin M. Crapps ◽  
Wentao Cheng

There are generally two reasons for conducting full-scale tests (FSTs) for the measurement of pipe or weld strain capacity, (1) to generate data useful in verifying the accuracy of a strain capacity prediction model, or (2) to test materials being considered for use. The former case involves exploring variables important to the scope of the model, while the latter involves project specific materials and girth weld procedures often combined with upper bound cases of weld misalignment. Because the challenge of strain-based design is relatively new, FSTs should be used for both reasons cited above. This paper provides observations, lessons learned, and recommendations regarding full-scale pipe strain capacity tests. This information has been developed through the conduct, witness, or review of 159 FSTs. One of the most important aspects of full-scale testing is the preparation of welded pipe test specimens. It is imperative that the specimens be fabricated with materials of known properties and that all possible measures be taken to limit variations from the intended specimen design. It has been observed that unexpected results are often due to irregularities in pipe material strength, weld strength, weld toughness, or the presence of unintended weld defects in a specimen designed to contain just man-made defects. Post-test fractography and metallurgical examination are very useful in explaining the performance of a FST; therefore, failure analysis is discussed.


Author(s):  
Colton Sheets ◽  
Robert Rettew ◽  
Chris Alexander ◽  
Ashwin Iyer

Composite repair systems for pipelines are continuing to be used for increasingly difficult and complex applications which can have a high consequence of failure. In these instances, full-scale testing is typically pursued at a high-cost to the manufacturer or operator. Finite element analysis (FEA) modeling is a valuable tool that becomes especially attractive as a method to reduce the number of full-scale tests required. This is particularly true when considering the costs associated with recreating complex load and temperature conditions. In order for FEA to fill this role, it is necessary to validate the results through full-scale testing at the same loads and temperatures. By using these techniques, FEA and full-scale testing can be used in unison to efficiently produce accurate results and allow for the adjustment of critical parameters at a much lower cost than creating additional full-scale tests. For this program, a series of finite element analysis (FEA) models were developed to evaluate the performance of composite materials used to reinforce corroded steel pipe in critical applications at elevated temperatures up to 120 °C. Two composite repair manufacturers participated in the study which was conducted on 12-inch × 0.375-inch Gr. X60 pipes with machined simulated corrosion defects that represented 50% wall loss. Load conditions consisted of axial compressive loads or bending moments to generate compressive stresses in the machined defect. In the described evaluation program, FEA simulations were able to produce results which supported those found in full-scale validation testing. From the FEA models stresses and strains were extracted from the reinforced steel and composite materials. Good correlation was observed in comparing the results. Although limitations of the modeling included accurately capturing differential thermal strains introduced by the elevated test temperature, the results indicated that FEA models could be used as a cost-effective means for assessing composite repair systems in high-temperature applications.


Author(s):  
Kazem Sadati ◽  
Hamid Zeraatgar ◽  
Aliasghar Moghaddas

Maneuverability of planing craft is a complicated hydrodynamic subject that needs more studies to comprehend its characteristics. Planing craft drivers follow a common practice for maneuver of the craft that is fundamentally different from ship’s standards. In situ full-scale tests are normally necessary to understand the maneuverability characteristics of planing craft. In this paper, a study has been conducted to illustrate maneuverability characteristics of planing craft by full-scale tests. Accelerating and turning maneuver tests are conducted on two cases at different forward speeds and rudder angles. In each test, dynamic trim, trajectory, speed, roll of the craft are recorded. The tests are performed in planing mode, semi-planing mode, and transition between planing mode to semi-planing mode to study the effects of the craft forward speed and consequently running attitude on the maneuverability. Analysis of the data reveals that the Steady Turning Diameter (STD) of the planing craft may be as large as 40 L, while it rarely goes beyond 5 L for ships. Results also show that a turning maneuver starting at planing mode might end in semi-planing mode. This transition can remarkably improve the performance characteristics of the planing craft’s maneuverability. Therefore, an alternative practice is proposed instead of the classic turning maneuver. In this practice, the craft traveling in the planing mode is transitioned to the semi-planing mode by forward speed reduction first, and then the turning maneuver is executed.


Sign in / Sign up

Export Citation Format

Share Document