scholarly journals New approaches of the Next-gen collaborative design platform

2021 ◽  
Author(s):  
Vlachodimos Georgios ◽  

The architecture design process always changes because the software always updates with new tools and the development - innovation is in the first line of progress. The human-machine cooperation has become commonplace through Computer-Aided Design tools, but a more improved collaboration appears possible only through an endeavor into a kind of artificial design intelligence and Augmented Reality. According to all the above, the research shown in this paper the core ideas - identifying design specifications - of a next-generation collaborative design platform. The direct coupling of introducing multi-industry systems - tools, 3D databases, AEC, and Open-BIM technologies opens up totally new ways of approaching architectural design problems resulting in a new flexible modeling workflow with real-time visualization. Finally, this critical examination research makes an original contribution to changing 'attitude' towards the 3d modeling of architectural design thinking. A collaborative design platform creating a more efficient and versatile architecture.

2013 ◽  
Vol 572 ◽  
pp. 315-318
Author(s):  
Leszek Kotulski ◽  
Barbara Strug

Different types of graphs have successfully been used to represent different objects in design problems. Graph transformations are often used as a way to generate, update and modify such graphs. Typical use of graph productions assumes that change of a graph is done by applying a single transformation or a sequence of independent productions. Yet, in many real life design tasks the application of a production may depend on the possibility of applying other productions. Moreover the productions required to be applied usually only depend on the current graph so the set of productions cannot be defined apriori. In this paper we present a novel approach, called a transactional model, where a set of productions is dynamically chosen in a way that it is possible to fulfill a common goal.. Only if all of the productions can be applied the whole transaction is carried out. The approach is illustrated with the problem from the domain of architectural design.


Author(s):  
А.И. Гайкович ◽  
С.И. Лукин ◽  
О.Я. Тимофеев

Процесс создания проекта судна или корабля рассматривается как преобразование информации, содержащейся в техническом задании на проектирование, нормативных документах и знаниях проектанта, в информацию, объем которой позволяет реализовать проект. Проектирование может быть представлено как поиск решения в пространстве задач. Построение цепочки последовательно решаемых задач составляет методику проектирования. Проектные задачи могут быть разбиты на две группы. Первая группа ‒ это полностью формализуемые задачи, для решения которых есть известные алгоритмы. Например, построение теоретического чертежа по известным главным размерениям и коэффициентам формы. Ко второй группе задач можно отнести трудно формализуемые или неформализуемые задачи. Например, к задачам этого типа можно отнести разработку общего расположения корабля. Важнейшим инструментом проектирования современного корабля или судна является система ав­томатизированного проектирования (САПР). Решение САПР задач первой группы не представляет проблемы. Введение в состав САПР задач второй группы подразумевает разработку специального ма­тематического аппарата, базой для которого, которым является искусственный интеллект, использующий теорию нечетких множеств. Однако, настройка искусственных нейронных сетей, создание шкал для функций принадлежности элементов нечетких множеств и функций предпочтений лица принимающего решения, требует участие человека. Таким образом, указанные элементы искусственного интеллекта фиксируют качества проек­танта как специалиста и создают его виртуальный портрет. The process of design a project of a ship is considered as the transformation of information contained in the design specification, regulatory documents and the designer's knowledge into information, the volume of which allows the project to be implemented. Designing can be represented as a search for a solution in the space of problems. The construction of a chain of sequentially solved tasks constitutes the design methodology. Design problems can be divided into two groups. The first group is completely formalizable tasks, for the solution of which there are known algorithms. For example, the construction of ship's surface by known main dimensions and shape coefficients. Tasks of the second group may in­clude those which are difficult to formalize or non-formalizable. For example, tasks of this type can include develop­ment of general arrangement of a ship. The most important design tool of a modern ship or vessel is a computer-aided design system (CAD). The solu­tion of CAD problems of the first group is not a problem. Introduction of tasks of the second group into CAD implies development of a special mathematical apparatus, the basis for which is artificial intelligence, which uses the theory of fuzzy sets. However, the adjustment of artificial neural networks, the creation of scales for membership functions of fuzzy sets elements and functions of preferences of decision maker, requires human participation. Thus, the above elements of artificial intelligence fix the qualities of the designer as a specialist and create his virtual portrait.


2004 ◽  
Vol 23 (3) ◽  
pp. 68-78
Author(s):  
Jean Fivaz ◽  
Willem A. Cronjé

The goal of this investigation is to determine the advantages of using genetic algorithms in computer-aided design as applied to inductors.  These advantages are exploited in design problems with a number of specifications and constraints, as encountered in power electronics during practical inductor design. The design tool should be able to select components, such as cores and wires, from databases of available components, and evaluate these choices based on the components’ characteristic data read from a database of manufacturers’ data-sheets.  The proposed design must always be practically realizable, as close to the desired specifications as possible and within any specified constraints.


Author(s):  
Kazuhiro Muramatsu ◽  
Sonam Wangmo

Design education is important at technical universities and colleges. In general, real product design requires collaborative work. In this chapter, the authors discuss collaborative design education. An A360 cloud platform on Autodesk's 3D computer-aided design “AutoCAD” is adopted to illustrate a collaborative design activity implemented in the Engineering Graphics class offered at the College of Science and Technology, Royal University of Bhutan. By using A360 cloud, students can share a 3D model with group members. Based on feedback received, students can modify the initial model, share it, print, and discuss the modified object with members. This collaborative work allows students to create enhanced 3D design objects while engaged in discussions and interactions. The authors also discuss some difficulties encountered during the collaborative process and offer recommendations and future research ideas.


Author(s):  
Antonios Karampelas

This chapter presents the blended-learning, project-based high school STEAM (science, technology, engineering, art, and mathematics) course that has been developed and delivered at the American Community Schools (ACS) Athens. The STEAM course fosters data literacy; critical, creative, and computational thinking; and problem-solving. The topics range from the internet of things, artificial intelligence, and data-based investigations to an introduction to aerospace, electrical, and architectural engineering, in the context of the Fourth Industrial Revolution. Computer-aided design software and the design thinking methodology are the major creative tools students use to experience immersive STEAM learning. The content of the course is described in terms of learning goals, instruction, and assessments, accompanied by instructional material. The transition of the STEAM course to an online setting is also discussed, and the author's reflections are shared.


2013 ◽  
Vol 756-759 ◽  
pp. 1973-1978
Author(s):  
Hong Liang Guo

Along with the constant development and popularization of computer, computer application becomes more and more widely, meanwhile the computerized design technique is also is constantly changing and developing. This paper studies the combination of Computer Aided Design and architectural creation,analyzes and researches Computer-aided architectural design,hoping that it can induce more valuable researches in related area.


2005 ◽  
Vol 6 (1) ◽  
pp. 2-10 ◽  
Author(s):  
Christopher D. Cera ◽  
Ilya Braude ◽  
Taeseong Kim ◽  
JungHyun Han ◽  
William C. Regli

Information security and assurance are new frontiers for collaborative design. In this context, information assurance (IA) refers to methodologies to protect engineering information by ensuring its availability, confidentiality, integrity, nonrepudiation, authentication, access control, etc. In collaborative design, IA techniques are needed to protect intellectual property, establish security privileges and create “need to know” protections on critical features. This paper provides a framework for information assurance within collaborative design based on a technique we call Role-Based Viewing. We extend upon prior work to present Hierarchical Role-Based Viewing as a more flexible and practical approach since role hierarchies naturally reflect an organization’s lines of authority and responsibility. We establish a direct correspondence between multilevel security and multiresolution surfaces where a hierarchy is represented as a weighted directed acyclic graph. The permission discovery process is formalized as a graph reachability problem and the path-cost can be used as input to a multiresolution function. By incorporating security with collaborative design, the costs and risks incurred by multiorganizational collaboration can be reduced. The authors believe that this work is the first of its kind to unite multilevel security and information clouded with geometric data, including multiresolution surfaces, in the fields of computer-aided design and collaborative engineering.


Author(s):  
David J. French ◽  
Brett Stone ◽  
Thomas T. Nysetvold ◽  
Ammon Hepworth ◽  
W. Edward Red

Real-time simultaneous multi-user (RSM) computer-aided design (CAD) is currently a major area of research and industry interest due to its potential to reduce design lead times and improve design quality through enhanced collaboration. Minecraft, a popular multi-player online game in which players use blocks to design structures, is of academic interest as a natural experiment in collaborative 3D design of very complex structures. Virtual teams of up to forty simultaneous designers have created city-scale models with total design times in the thousands of hours. Using observation and a survey of Minecraft users, we offer insights into how virtual design teams might effectively build, communicate, and manage projects in an RSM CAD design environment. The results suggest that RSM CAD will be useful and practical in an engineering setting with several simultaneous contributors. We also discuss the potential effects of RSM CAD on team organization, planning, design concurrency, communication, and mentoring.


Sign in / Sign up

Export Citation Format

Share Document