Collaborative Design Education Using 3D Printing

Author(s):  
Kazuhiro Muramatsu ◽  
Sonam Wangmo

Design education is important at technical universities and colleges. In general, real product design requires collaborative work. In this chapter, the authors discuss collaborative design education. An A360 cloud platform on Autodesk's 3D computer-aided design “AutoCAD” is adopted to illustrate a collaborative design activity implemented in the Engineering Graphics class offered at the College of Science and Technology, Royal University of Bhutan. By using A360 cloud, students can share a 3D model with group members. Based on feedback received, students can modify the initial model, share it, print, and discuss the modified object with members. This collaborative work allows students to create enhanced 3D design objects while engaged in discussions and interactions. The authors also discuss some difficulties encountered during the collaborative process and offer recommendations and future research ideas.

Author(s):  
David J. French ◽  
Brett Stone ◽  
Thomas T. Nysetvold ◽  
Ammon Hepworth ◽  
W. Edward Red

Real-time simultaneous multi-user (RSM) computer-aided design (CAD) is currently a major area of research and industry interest due to its potential to reduce design lead times and improve design quality through enhanced collaboration. Minecraft, a popular multi-player online game in which players use blocks to design structures, is of academic interest as a natural experiment in collaborative 3D design of very complex structures. Virtual teams of up to forty simultaneous designers have created city-scale models with total design times in the thousands of hours. Using observation and a survey of Minecraft users, we offer insights into how virtual design teams might effectively build, communicate, and manage projects in an RSM CAD design environment. The results suggest that RSM CAD will be useful and practical in an engineering setting with several simultaneous contributors. We also discuss the potential effects of RSM CAD on team organization, planning, design concurrency, communication, and mentoring.


Author(s):  
David J. French ◽  
Brett Stone ◽  
Thomas T. Nysetvold ◽  
Ammon Hepworth ◽  
W. Edward Red

Synchronous collaborative (“multi-user”) computer-aided design (CAD) is a current topic of academic and industry interest due to its potential to reduce design lead times and improve design quality through enhanced collaboration. Minecraft, a popular multiplayer online game in which players can use blocks to design structures, is of academic interest as a natural experiment in a collaborative 3D design of very complex structures. Virtual teams of up to 40 simultaneous designers have created city-scale models with total design times in the thousands of hours. Using observation and a survey of Minecraft users, we offer insights into how virtual design teams might effectively build, communicate, and manage projects in a multi-user CAD design environment. The results suggest that multi-user CAD will be useful and practical in an engineering setting with several simultaneous contributors. We also discuss the effects of multi-user CAD on team organization, planning, design concurrency, communication, and mentoring.


Author(s):  
Alison McKay ◽  
Scott Chase ◽  
Kristina Shea ◽  
Hau Hing Chau

AbstractCurrently available computer-aided design tools provide strong support for the later stages of product development processes where the structure and shape of the design have been fixed. Support for earlier stages of product development, when both the structure and shape of the design are still fluid, demands conceptual design tools that support designers' ways of thinking and working, and enhance creativity, for example, by offering design alternatives, difficult or not, possible without the use of such tools. The potential of spatial grammars as a technology to support such design tools has been demonstrated through experimental research prototypes since the 1970s. In this paper, we provide a review of recent spatial grammar implementations, which were presented in the Design Computing and Cognition 2010 workshop on which this paper is based, in the light of requirements for conceptual design tools and identify future research directions in both research and design education.


Author(s):  
Brett Stone ◽  
John Salmon ◽  
Keenan Eves ◽  
Matthew Killian ◽  
Landon Wright ◽  
...  

A competition for teams of three students using a prototype multi-user computer-aided design (MUCAD) tool was held to investigate various hypotheses regarding the performance of teams in such a setting. By comparing models from the competition to the same model in a single-user CAD environment, it is seen that use of a MUCAD system can significantly increase the value-added per unit of calendar time for a modeling effort. An investigation was also made into the causes of the performance differences among the various MUCAD teams which participated in the competition. Analysis of the results shows that teams that encouraged effective forms of communication and teams whose members scored similarly on the Purdue Spatial Visualization Test: Visualization of Rotations (PSVT:R) performed better than other teams. Areas of future research in analyzing teams in MUCAD environments are suggested.


2005 ◽  
Vol 5 (3) ◽  
pp. 188-197 ◽  
Author(s):  
J. Corney ◽  
C. Hayes ◽  
V. Sundararajan ◽  
P. Wright

The vision of fully automated manufacturing processes was conceived when computers were first used to control industrial equipment. But realizing this goal has not been easy; the difficulties of generating manufacturing information directly from computer aided design (CAD) data continued to challenge researchers for over 25 years. Although the extraction of coordinate geometry has always been straightforward, identifying the semantic structures (i.e., features) needed for reasoning about a component’s function and manufacturability has proved much more difficult. Consequently the programming of computer controlled manufacturing processes such as milling, cutting, turning and even the various lamination systems (e.g., SLA, SLS) has remained largely computer aided rather than entirely automated. This paper summarizes generic difficulties inherent in the development of feature based CAD/CAM (computer aided manufacturing) interfaces and presents two alternative perspectives on developments in manufacturing integration research that have occurred over the last 25 years. The first perspective presents developments in terms of technology drivers including progress in computational algorithms, enhanced design environments and faster computers. The second perspective describes challenges that arise in specific manufacturing applications including multiaxis machining, laminates, and sheet metal parts. The paper concludes by identifying possible directions for future research in this area.


From time to time the Royal Society organizes meetings for the discussion of some new development in engineering and applied science. It seemed possible to the organizers of this meeting that it would be profitable to bring together workers in industry and in the universities to discuss some aspect of computer-aided design. As you will see we have chosen the application of computer aids to mechanical engineering design and manufacture. This restriction to mechanical engineering was deliberate, partly because the application of computer aids to mechanical engineering design is somewhat behind similar activities in electrical and civil engineering. Another reason is that the development of such applications has reached a particularly interesting stage, and it is now perhaps appropriate to review progress and to discuss the directions in which future research should proceed. Although some examples of computer-aided design in mechanical engineering can be found from the earliest days of computing, the development really started in the late fifties with early experiments in the use of graphic displays and with the introduction of multi-access computing. Some may date the beginning of the developments which we are going to discuss today, from the work at M. I. T. on automated programmed drawing started in 1958. This has led to a concentration of effort on graphics and computer-aided drafting. Much research has been done on the mathematical description of curves, surfaces and volumes in a form suitable for engineering design. Work has been done on the automatic dimensioning of drawings, hidden line removal, the prob­lems of lofting, etc.


2005 ◽  
Vol 127 (12) ◽  
pp. 32-34
Author(s):  
Jean Thilmany

This article discusses that how mechanical engineers will pair their already-familiar computer-aided design software with not-so-familiar three-dimensional (3D) displays for true 3D design. This is in accordance to a number of vendors' intent on supplying the newfangled computer monitors, within the next two decades. Although some of the devices are already on the market, affordable 3D monitors and displays seem to be more than a decade away, according to one university professor at work on such a project. Widespread adoption is still hindered by factors such as cost, software availability, and lack of a mouse-like device needed to interact with what’s on screen. Over the past 25 years, mechanical engineers have witnessed evolutionary change in design methods-from pen and paper to two-dimensional software and now to 3-D computer-aided design. While software makers have stepped up with sleeker and faster modeling capabilities, visualization lags. Computer users two decades out will carry out all business, web surfing, and gaming on 3-D displays. That next generation may well find the very idea of 2-D monitors to be as dated as record albums seem to teenagers today.


Author(s):  
Kenway Chen ◽  
Dirk Schaefer

The domain of Electrical Computer-Aided Design and Engineering (ECAD/ECAE) has been subject to major and rapid change over the past couple of years. Electrical Engineering Computer-Aided Design (CAD) tools developed in the early to mid-1990s no longer meet future requirements. Consequently, a new generation of Electrical Engineering CAD systems has been under development for about a decade now. An overview of advances in this field is presented in the introductory part of this paper. This overview also sets the context and provides background information for the main topic, MCAD-ECAD-integration, to be addressed in the remainder of this paper. Many complex engineered systems encompass mechanical as well as electrical engineering components. Unfortunately, contemporary CAE environments do not provide a sufficient degree of integration in order to allow for multi-disciplinary product modeling and bi-directional information flow (i.e. automated design modifications on either side) between mechanical and electrical CAD domains. Overcoming this barrier of systems integration would release a tremendous efficiency potential with regard to the efficient development of multidisciplinary product platforms and configurations. An overview of the state-of-the-art in MCAD-ECAD integration is presented. In addition, associated research questions are postulated and potential future research perspectives discussed.


2019 ◽  
Vol 9 (11) ◽  
pp. 2338 ◽  
Author(s):  
Jose Luis Saorín ◽  
Vicente Lopez-Chao ◽  
Jorge de la Torre-Cantero ◽  
Manuel Drago Díaz-Alemán

Aerospace heritage requires tools that allow its transfer and conservation beyond photographs and texts. The complexity of these engineering projects can be collected through digital graphic representation. Nevertheless, physical scale models provide additional information of high value when they involve full detailed information, for which the model in engineering was normally one more product of the manufacturing process, which entails a high cost. However, the standardization of digital fabrication allows the manufacture of high-detail models at low cost. For this reason, in this paper a case study of the graphic reengineering and planning stages for digital fabrication of a full-scale high-detail model (HDM) of the spatial instrument of the European Space Agency, named the Solar Orbiter mission Polarimetric and Helioseismic Imager (SO/PHI), is presented. After the analysis of this experience, seven stages of planning and graphic reengineering are proposed through collaborative work for the low cost digital manufacture of HDMs.


Sign in / Sign up

Export Citation Format

Share Document