scholarly journals One Dimensional Analysis Model for Condensation Heat Transfer in Feed Water Heater.

1998 ◽  
Vol 12 (1) ◽  
pp. 67-72
Author(s):  
Michio MURASE ◽  
Kazuhide TAKAMORI ◽  
Tsuyoshi AIHARA
1968 ◽  
Vol 90 (4) ◽  
pp. 547-552 ◽  
Author(s):  
E. K. Levy

A one-dimensional analysis of a compressible vapor flowing within the evaporator section of a heat pipe is presented. Comparisons between the theoretical results and existing heat pipe data show that the presence of gasdynamic choking can limit the heat transfer capacity of a heat pipe operating at sufficiently low vapor pressures.


1947 ◽  
Vol 14 (4) ◽  
pp. A317-A336 ◽  
Author(s):  
Ascher H. Shapiro ◽  
W. R. Hawthorne

Abstract Recent developments in the fields of propulsion, flow machinery, and high-speed flight have emphasized the need for an improved understanding of the characteristics of compressible flow. A one-dimensional analysis for flow without shocks is presented which takes into account the simultaneous effects of area change, wall friction, drag of internal bodies, external heat exchange, chemical reaction, change of phase, injection of gases, and changes in molecular weight and specific heat. The method of selecting independent and dependent variables, and the organization of the working equations, leads, it is believed, to a better understanding of the influence of the foregoing effects, and also simplifies greatly the analytical treatment of particular problems. Examples are given first of several simple types of flow, including (a) area change only; (b) heat transfer only; (c) wall friction only; and (d) gas injection only. In addition, examples of flow with combined effects are given, including (a) simultaneous friction and area change; (b) simultaneous friction and heat transfer; and (c) simultaneous liquid injection and evaporation. A one-dimensional analysis for flow through a discontinuity is presented, allowing for energy, shock, drag, and gas-injection effects, and for changes in gas properties. This analysis is applicable to such processes as: (a) the adiabatic normal shock; (b) combustion; (c) moisture condensation shocks; and (d) steady explosion waves.


1997 ◽  
Vol 11 (4) ◽  
pp. 380-387
Author(s):  
Kazuhide TAKAMORI ◽  
Michio MURASE ◽  
Tsuyoshi AIHARA

1976 ◽  
Vol 98 (3) ◽  
pp. 407-413 ◽  
Author(s):  
S. S. Dua ◽  
C. L. Tien

This paper presents a two-dimensional analysis of the effect of precursory cooling on conduction-controlled rewetting of a vertical surface, whose initial temperature is higher than the sputtering temperature. Precursory cooling refers to the cooling caused by the droplet-vapor mixture in the region immediately ahead of the wet front, and is described mathematically by two dimensionless constants which characterize its magnitude and the region of influence. The physical model developed to account for precursory cooling consists of an infinitely extended vertical surface with the dry region ahead of the wet front characterized by an exponentially decaying heat flux and the wet region behind the moving film-front associated with a constant heat transfer coefficient. Apart from the two dimensionless constants describing the extent of precursory cooling, the physical problem is characterized by three dimensionless groups: the Peclet number or the dimensionless wetting velocity, the Biot number and a dimensionless temperature. Limiting solutions for large and small Peclet numbers have been obtained utilizing the Wiener-Hopf technique coupled with appropriate kernel substitutions. A semiempirical matching relation is then devised for the entire range of Peclet numbers. Existing experimental data with variable flow rates at atmospheric pressure are very closely correlated by the present model. Finally a comparison is drawn between the one-dimensional limit of the present analysis and the corresponding one-dimensional solution obtained by treating the dry region ahead of the wet front characterized by an exponentially decaying heat transfer coefficient.


Author(s):  
Eric Reitze ◽  
Hank Price

This paper presents the implementation of an integrated solar combined cycle (ISCC) on the existing 44 MW Cameo Power Generating Station, located in Palisade, Colorado. The plant was originally built in 1957 as a coal fired power plant, to serve the Grand Junction community. This plant has been chosen to demonstrate the viability of the ISCC because of its time line to decommissioning and the availability of additional power from nearby stations to fulfill the community’s needs. The solar system at Cameo utilizes 8 aluminum parabolic trough collectors arranged in 4 loops. Each of these collectors is approximately 150 meters long and 5.77 meters wide. The hot heat transfer fluid used in the solar field is sent to a solar feed water heater, located in between two of the existing feed water heaters, to supplement the thermal energy required by the steam cycle. At design conditions, the solar field will provide 4 MW of thermal energy to the power plant. The development of this ISCC has faced several design and construction challenges not common in traditional power plant and solar power plant design. When first constructed, the Cameo station had no provisions made regarding solar field location, heat transfer fluid piping runs, heat transfer fluid pumping station, thermal expansion vessels, the addition of solar thermal energy to the feed water system, and the integration of a solar field control system into the existing plant distributed control system. Also unaccounted for are the affects the integration of a solar feed water heater has on the thermodynamic efficiency of the steam cycle. This paper discusses these challenges, as well as their resolution, as seen during the engineering, procurement, construction, and commissioning phases of this project. The Cameo Power Generating Station is located in the DeBeque Canyon, 4 miles east of Palisade, Colorado along the Colorado River and Interstate 70. The solar feed water heating demonstration will be in operation for 1 to 2 years, at the discretion of Xcel Energy, to test and develop operating and maintenance methods for large scale application. After such time, both the plant and the solar field will be decommissioned. After decommissioning all applicable solar field equipment shall be refurbished and utilized at additional testing facilities.


Sign in / Sign up

Export Citation Format

Share Document