scholarly journals Applications of Machine Learning Methods to Genomic Selection in Breeding Wheat for Rust Resistance

2018 ◽  
Vol 11 (2) ◽  
pp. 170104 ◽  
Author(s):  
Juan Manuel González‐Camacho ◽  
Leonardo Ornella ◽  
Paulino Pérez‐Rodríguez ◽  
Daniel Gianola ◽  
Susanne Dreisigacker ◽  
...  
Author(s):  
Umesh R. Rosyara ◽  
Kate Dreher ◽  
Bhoja R. Basnet ◽  
Susanne Dreisigacker

Abstract This chapter discusses the increased implications in the current breeding methodology of wheat, such as rapid evolution of new sequencing and genotyping technologies, automation of phenotyping, sequencing and genotyping methods and increased use of prediction and machine learning methods. Some of the strategies that will further transform wheat breeding in the next few years are also presented.


2019 ◽  
Vol 24 (34) ◽  
pp. 3998-4006
Author(s):  
Shijie Fan ◽  
Yu Chen ◽  
Cheng Luo ◽  
Fanwang Meng

Background: On a tide of big data, machine learning is coming to its day. Referring to huge amounts of epigenetic data coming from biological experiments and clinic, machine learning can help in detecting epigenetic features in genome, finding correlations between phenotypes and modifications in histone or genes, accelerating the screen of lead compounds targeting epigenetics diseases and many other aspects around the study on epigenetics, which consequently realizes the hope of precision medicine. Methods: In this minireview, we will focus on reviewing the fundamentals and applications of machine learning methods which are regularly used in epigenetics filed and explain their features. Their advantages and disadvantages will also be discussed. Results: Machine learning algorithms have accelerated studies in precision medicine targeting epigenetics diseases. Conclusion: In order to make full use of machine learning algorithms, one should get familiar with the pros and cons of them, which will benefit from big data by choosing the most suitable method(s).


2020 ◽  
Vol 4 (2) ◽  
pp. 61
Author(s):  
Yi Di Boon ◽  
Sunil Chandrakant Joshi ◽  
Somen Kumar Bhudolia ◽  
Goram Gohel

Advanced manufacturing techniques, such as automated fiber placement and additive manufacturing enables the fabrication of fiber-reinforced polymer composite components with customized material and structural configurations. In order to take advantage of this customizability, the design process for fiber-reinforced polymer composite components needs to be improved. Machine learning methods have been identified as potential techniques capable of handling the complexity of the design problem. In this review, the applications of machine learning methods in various aspects of structural component design are discussed. They include studies on microstructure-based material design, applications of machine learning models in stress analysis, and topology optimization of fiber-reinforced polymer composites. A design automation framework for performance-optimized fiber-reinforced polymer composite components is also proposed. The proposed framework aims to provide a comprehensive and efficient approach for the design and optimization of fiber-reinforced polymer composite components. The challenges in building the models required for the proposed framework are also discussed briefly.


Author(s):  
Francois Charih ◽  
Ashlynn Steeves ◽  
Matthew Bromwich ◽  
Amy E. Mark ◽  
Renee Lefrancois ◽  
...  

2018 ◽  
Vol 7 (1.7) ◽  
pp. 201
Author(s):  
K Jayanthi ◽  
C Mahesh

Machine learning enables computers to help humans in analysing knowledge from large, complex data sets. One of the complex data is genetics and genomic data which needs to analyse various set of functions automatically by the computers. Hope this machine learning methods can provide more useful for making these data for further usage like gene prediction, gene expression, gene ontology, gene finding, gene editing and etc. The purpose of this study is to explore some machine learning applications and algorithms to genetic and genomic data. At the end of this study we conclude the following topics classifications of machine learning problems: supervised, unsupervised and semi supervised, which type of method is suitable for various problems in genomics, applications of machine learning and future views of machine learning in genomics.


Sign in / Sign up

Export Citation Format

Share Document