scholarly journals Assessing Forest Plantation Productivity of Exotic and Indigenous Species on Degraded Secondary Forests

2011 ◽  
Vol 6 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Heryati
2015 ◽  
Vol 95 (2) ◽  
pp. 187-199 ◽  
Author(s):  
Rock Ouimet ◽  
Anne-Pascale Pion ◽  
Marc Hébert

Ouimet, R., Pion, A.-P. and Hébert, M. 2015. Long-term response of forest plantation productivity and soils to a single application of municipal biosolids. Can. J. Soil Sci. 95: 187–199. After 16 to 19 yr, we revisited four experimental trials set up in the early 1990s to evaluate the long-term impact of municipal biosolids applied in forest plantations. Tree growth and the soil were sampled to determine the effects of a single application of biosolids applied at (liquid equivalent) rates of 0, 130, 200, and 400 m3ha−1. Tree radial growth responded markedly to biosolids in the young plantations, increasing from 18 % for Pinus resinosa to 62 % for Picea glauca, and up to 700 % for Quercus sp. Increases in phosphorus (P) concentrations in the tree foliage in response to biosolids could still be detected in the conifer trials. In the top 0–5 cm soil layer, organic carbon (C), total nitrogen (N), P, and copper (Cu) concentrations and pools increased, while soil compaction and bulk density decreased. In the deepest soil layer sampled (20–40 cm depth), the total N and calcium (Ca) pools were reduced by the biosolids treatments, while the pool of exchangeable acidity increased. Our observations indicate that a single application of liquid biosolids up to 400 m3ha−1(30 t ha−1DM) in young forest plantations is a sustainable practice without undue risk to such podzolic soils.


Author(s):  
М. А. Babaeva ◽  
S. V. Osipova

The regularities of changes in the resistance of different groups of fodder plants to adverse conditions were studied. This is due to the physiological properties that allow them to overcome the harmful effects of the environment. As a result of research species - plant groups with great adaptive potential to the harsh continental semi-desert conditions were identified. Monitoring observation and experimental studies showed too thin vegetation cover as a mosaic, consisting of perennial xerophytic herbs and semishrubs, sod grasses, saltwort and wormwood, as well as ephemera and ephemeroids under the same environmental conditions, depending on various climatic and anthropogenic factors. This is due to the inability or instability of plant species to aggressive living environment. It results in horizontal heterogeneity of the grass stand, division into smaller structures, and mosaic in the vegetation cover of the Kochubey biosphere station. The relative resistance to moderate stress was identified in the following species from fodder plants Agropyron cristatum, A. desertorum, Festuca valesiaca, Cynodon dactylon, Avena fatua; as for strong increasing their abundance these are poorly eaten plant species Artemisia taurica, Atriplex tatarica, Falcaria vulgaris, Veronica arvensis, Arabidopsis thaliana and other. On the site with an increasing pressure in the herbage of phytocenoses the number of xerophytes of ruderal species increases and the spatial structure of the vegetation cover is simplified. In plant communities indigenous species are replaced by adventive plant species. The mosaic of the plant cover of phytocenoses arises due to the uneven distribution in the space of environmental formation, i.e. an edificatory: Salsola orientalis, S. dendroides, Avena fatua, Cynodon dactylon, Artemisia taurica, A. lercheanum, Xanthium spinosum, Carex pachystyli, under which the remaining components of the community adapt. Based on the phytocenotic indicators of pasture phytocenoses it can be concluded that the vegetation cover is in the stage of ecological stress and a decrease in the share of fodder crops and an increase in the number of herbs indicates this fact.


2012 ◽  
pp. 109-134
Author(s):  
P. S. Shirokikh ◽  
A. M. Kunafin ◽  
V. B. Martynenko

The secondary birch and aspen forests of middle stages of succession of the central elevated part of the Southern Urals are studied. 4 subassociations, 1 community, and 7 variants in the alliances of Aconito-Piceion and Piceion excelsae are allocated. It is shown that the floristic composition of aspen and birch secondary forests in the age of 60—80 years is almost identical to the natural forests. However, a slight increase the coenotical role of light-requiring species of grasslands and hemiboreal forests in the secondary communities of the class Brachypodio-Betuletea was noticed as well as some reduction of role the shade-tolerant species of nemoral complex and species of boreal forests of the class Vaccinio-Piceetea. Dominant tree layer under the canopy of secondary series is marked by an active growth of natural tree species.


2009 ◽  
Vol 160 (3) ◽  
pp. 68-73 ◽  
Author(s):  
Jean-Philippe Schütz

Since the present climate in Switzerland includes abundant rainfall, the climatic changes should not present any serious danger of the ground drying out. In fact, higher precipitation levels are predicted. So it would seem that climate is likely to become more luxuriant rather than more dry. These conditions – together with the entry of nutrients with the rainfall – favour the growth of ash and maple but not of oak. Even with an increase in stressful dry summer periods, a consideration of the broad areas of distribution of indigenous species shows they possess a sufficiently great adaptability. Research into the effects of physiological stress on fir trees from different provenances shows in particular that those with local origins are better adapted to the habitat than those from elsewhere. The danger of an increase in storms should be countered by strategies aimed at increased resistance – through mixed plantation regulation and thinning out – rather than avoidance strategies. Ecoforestry is basically well armed for this task. It should be even more orientated towards the adaptability and resilience of forests.


2006 ◽  
Vol 157 (2) ◽  
pp. 31-36 ◽  
Author(s):  
Constant Yves Adou Yao ◽  
Edouard Kouakou N'Guessan

The inventory and the analysis of the woody species preserved in the different categories of cocoa and coffee plantations showed that they are relatively diversified (presence of endemic, rare and threatened species). They also preserved high tree density and high basal areas. The young plantations are especially diversified. Their number of species,density and basal areas and diversity index are similar to those of the neighbouring old growth and secondary forests. Older plantations display a sharp decline of diversity over time. Agricultural practices in the region represent a threat in the medium term to the preservation of biodiversity.


2019 ◽  
Vol 19 (5) ◽  
pp. 677-686 ◽  
Author(s):  
Samrat Paul ◽  
Piyali Basak ◽  
Namrata Maity ◽  
Chayan Guha ◽  
Nandan Kumar Jana

Background: Moringa oleifera lam, commonly known as “Sajina”, is an indigenous species to India. In our folk medicine, it is used for the treatment of Canker (cancer). The Moringa oleifera leaf extract contains many phyto-compounds, with some being anti-neoplastic in nature. Objective: Our preliminary study showed that the leaf extract significantly kills cancer cells compared to normal cells. On searching for the new phyto-compound, Bis-isothiocyanatomethyl) benzene was purified and isolated. Methods: The sequential process of fractional distillation, column chromatography, followed by TLC and HPLC is performed for purification. Every fraction from each step was tested on HeLa cell line for evaluating the presence of the phyto-compound. Results and Conclusion: FTIR peak analysis of a single phyto-compound shows the presence of thiocyanate group, aromatic carbon group. 1H & 13C NMR peak analysis along with High-resolution mass spectroscopy (HRMS) calculation confirm the chemical structure with IUPAC name [Bis (Isothiocyanatomethyl) benzene]. Previously, Isothiocyanatomethyl- benzene solely or in conjugation with sugar molecule has been reported, but its dimeric form in nature hasnot yet been published anywhere. It shows anticancer activity by retarding cancer cell growth & inhibits carcinogenesis on HeLa, MCF-7, and MDA-MB-231 cell lines by caspase 3 apoptotic pathway and showed comparatively less cytotoxicity to PBMC cell. It shows anticancer activity almost the same as the market available drug Cis-Platin. Therefore, further extrapolating its activity with different concentrations may result in its use as a drug formulation for the treatment of cancer.


Sign in / Sign up

Export Citation Format

Share Document