Die Prinzipien des naturnahen Waldbaus sind auch bei Klimawandel gültig (Essay) | The principles of ecoforestry are also valid in a changing climate (essay)

2009 ◽  
Vol 160 (3) ◽  
pp. 68-73 ◽  
Author(s):  
Jean-Philippe Schütz

Since the present climate in Switzerland includes abundant rainfall, the climatic changes should not present any serious danger of the ground drying out. In fact, higher precipitation levels are predicted. So it would seem that climate is likely to become more luxuriant rather than more dry. These conditions – together with the entry of nutrients with the rainfall – favour the growth of ash and maple but not of oak. Even with an increase in stressful dry summer periods, a consideration of the broad areas of distribution of indigenous species shows they possess a sufficiently great adaptability. Research into the effects of physiological stress on fir trees from different provenances shows in particular that those with local origins are better adapted to the habitat than those from elsewhere. The danger of an increase in storms should be countered by strategies aimed at increased resistance – through mixed plantation regulation and thinning out – rather than avoidance strategies. Ecoforestry is basically well armed for this task. It should be even more orientated towards the adaptability and resilience of forests.

1983 ◽  
Vol 4 ◽  
pp. 295 ◽  
Author(s):  
Robert Bindschadler

The behavior of Griesgletscher, Switzerland, is studied by application of a numerical model of temperate glacier flow. The analysis addresses the possible danger posed to a hydroelectric dam which is 600 m from the calving terminus of the glacier. Model parameters are adjusted to fit data collected over eleven years. A calving law relating the calving flux to the water depth at the front provides a good fit of the data. Assuming a continuation of the present climate, the terminus is predicted to retreat 200 m over the next forty years, followed by an advance of 150 m lasting several centuries. Numerous experimental climate alterations show that the dam will not be threatened by short-term climatic changes. A long-term mass-balance increase of 0.12 m of ice per year (or a drop of 0.2°C in mean annual air temperature) would be sufficient to fill the reservoir with ice. With an additional increase of 0.07 m of ice per year the terminus would reach the dam. Data from the 1923 and 1850 moraines are used to suggest lower-bound estimates of temperature changes (-0.4 and -0.6°C respectively) during these periods of glacial maxima.


2011 ◽  
Vol 15 (1) ◽  
pp. 197-207 ◽  
Author(s):  
K. Ono ◽  
T. Akimoto ◽  
L. N. Gunawardhana ◽  
S. Kazama ◽  
S. Kawagoe

Abstract. The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure probability accounts for the effects of topography (as relief energy), geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations) and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario) for the future and by accounting for the slope failure probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan. Time series analyses of annual sediment yields covering 15–20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5–7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 = 0.65). The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 = 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment yield for all of Japan is considered, both scenarios produced an approximately 17–18% increase around the first half of the 21st century as compared to the present climate. For the second half of the century, the MIROC and MRI-RCM20 scenarios predict increased sediment yields of 22% and 14%, respectively, as compared to present climate estimations. On a regional scale, both scenarios identified several common areas prone to increased sediment yields in the future. Substantially higher specific sediment yield changes (over 1000 m3/km2/year) were estimated for the Hokuriku, Kinki and Shikoku regions. Out of 105 river basins in Japan, 96 will have an increasing trend of sediment yield under a changing climate, according to the predictions. Among them, five river basins will experience an increase of more than 90% of the present sediment yield in the future. This study is therefore expected to guide decision-makers in identifying the basins that are prone to sedimentation hazard under a changing climate in order to prepare and implement appropriate mitigation measures to cope with the impacts.


2012 ◽  
Vol 9 (1) ◽  
pp. 139-173 ◽  
Author(s):  
L. N. Gunawardhana ◽  
S. Kazama

Abstract. This study estimated the effects of projected variations in precipitation and temperature on snowfall-snowmelt processes and subsequent river discharge variations in the Tagliamento River in Italy. A lumped-parameter, non-linear, rainfall-runoff model with 10 general circulation model (GCM) scenarios was used to capture river response variations attributed to climate-driven changes in 3 future time periods in comparison to the present climate. Spatial and temporal changes in snow cover were assessed using 15 high-quality Landsat images collected during the 2001–2003 time period, which were further used to define different elevation bands to incorporate the elevation effects on snowfall-snowmelt processes. The 7Q10 low-flow probability distribution approximated by the Log-Pearson type III distribution function was used to examine river discharge variations with respect to climate extremes in the future. On average, the results obtained for 10 scenarios indicate a consistent warming rate for all time periods, which may increase the maximum and minimum temperatures by 2.3 °C (0.6–3.7 °C) and 2.7 °C (1.0–4.0 °C), respectively, by the end of the 21st century compared to the present climate. Consequently, the exponential rate of frost day decrease for 1 °C winter warming in lower-elevation areas is approximately three-fold (262%) higher than that in higher-elevation areas, revealing that snowfall in lower-elevation areas will be more vulnerable under a changing climate. In spite of the relatively minor changes in annual precipitation (−17.4 ~ 1.7% compared to the average of the baseline (1991–2010) period), snowfall will likely decrease by 48–67% during the 2080–2099 time period. The accumulated effects of a decrease in winter precipitation and an increase in evapotranspiration demand on winter river discharge will likely be compensated for by early snowmelt runoff due to increases in winter temperatures. Nevertheless, the river discharge in other seasons will decrease significantly, with a 59% decrease in the predicted river discharge in October over 100 yr. The low-flow analysis indicated that while the magnitude of the minimum river discharge will increase (e.g. a 25% increase in the 7Q10 estimations for the winter season in the 2080–2099 time period), the number of annual average low-flow events will also increase (e.g. 16 and 15 more days during the spring and summer seasons, respectively, in the 2080–2099 time period compared to the average during the baseline period), leading to a future with a highly variable river discharge. Moreover, a consistent shift in river discharge timing would eventually cause snowmelt-generated river discharge to occur approximately 12 days earlier during the 2080–2099 time period compared to the baseline climate. These results are expected to raise the concern of policy makers, leading to the development of new water management strategies in the Tagliamento River basin to cope with changing climate conditions.


2010 ◽  
Vol 7 (5) ◽  
pp. 7121-7150
Author(s):  
K. Ono ◽  
T. Akimoto ◽  
L. N. Gunawardhana ◽  
S. Kazama ◽  
S. Kawagoe

Abstract. The objective of this study was to estimate the potential sediment yield distribution in Japan attributed to extreme-rainfall-induced slope failures in the future. For this purpose, a regression relationship between the slope failure hazard probability and the subsequent sediment yield was developed by using sediment yield observations from 59 dams throughout Japan. The slope failure hazard probability accounts for the effects of topography (as relief energy), geology and hydro-climate variations (hydraulic gradient changes due to extreme rainfall variations) and determines the potential slope failure occurrence with a 1-km resolution. The applicability of the developed relationship was then validated by comparing the simulated and observed sediment yields in another 43 dams. To incorporate the effects of a changing climate, extreme rainfall variations were estimated by using two climate change scenarios (the MRI-RCM20 Ver.2 model A2 scenario and the MIROC A1B scenario) for the future and by accounting for the slope failure hazard probability through the effect of extreme rainfall on the hydraulic gradient. Finally, the developed slope failure hazard-sediment yield relationship was employed to estimate the potential sediment yield distribution under a changing climate in Japan. Time series analyses of annual sediment yields covering 15–20 years in 59 dams reveal that extreme sedimentation events have a high probability of occurring on average every 5–7 years. Therefore, the extreme-rainfall-induced slope failure probability with a five-year return period has a statistically robust relationship with specific sediment yield observations (with r2 = 0.65). The verification demonstrated that the model is effective for use in simulating specific sediment yields with r2 = 0.74. The results of the GCM scenarios suggest that the sediment yield issue will be critical in Japan in the future. When the spatially averaged sediment yield for all of Japan is considered, both scenarios produced an approximately 17–18% increase around the first half of the 21st century as compared to the present climate. For the second half of the century, the MIROC and MRI-RCM20 scenarios predict increased sediment yields of 22% and 14%, respectively, as compared to present climate estimations. On a regional scale, both scenarios identified several common areas prone to increased sediment yields in the future. Substantially higher specific sediment yield changes (over 1000 m3/km2/year) were estimated for the Hokuriku, Kinki and Shikoku regions. Out of 105 river basins in Japan, 96 will have an increasing trend of sediment yield under a changing climate, according to the predictions. Among them, five river basins will experience an increase of more than 90% of the present sediment yield in the future. This study is therefore expected to guide decision-makers in identifying the basins that are prone to sedimentation hazard under a changing climate in order to prepare and implement appropriate mitigation measures to cope with the impacts.


2019 ◽  
Vol 47 (6) ◽  
pp. 836-863 ◽  
Author(s):  
Stephanie Erev

Climate change is more than a discrete issue demanding political attention and response. A changing climate permeates political life as material processes of planetary change reverberate in our bodies, affecting subterranean processes of attention and evoking bodily responses at and below the register of awareness. By way of example, I explore the register of bodily feeling to raise the possibility that proliferating anomalies in atmospheric, oceanic, and seismic activities are entering into subliminal experiences of time and confounding embodied expectations of how the future is likely to flow from the past. The essay concludes with a preliminary discussion of how micropolitical strategies to amplify visceral experiences of climatic changes might valuably contribute to larger programs for climate action.


1966 ◽  
Vol 3 (6) ◽  
pp. 811-818 ◽  
Author(s):  
Mark F. Meier

Remapping programs on glaciers are undertaken to determine changes in ice thickness and volume, which supposedly reflect glacier response to changing climate. However, thickness changes, derived photogrammetrically, cannot be used to determine ablation or other specific mass budget quantities, or response characteristics, without concurrent measurements made on. the glacier surface, The varied nature of the difficulty is illustrated by the following examples: (1) data front South Cascade Glacier demonstrate that the rate of change of thickness is the vectorial combination of emergence velocity, specific net budget rate, and (in the accumulation area only) a compaction velocity; (2) limitations on the use of photogrammetric data to detect and interpret kinematic waves are illustrated by results from Nisqually Glacier; (3) changes in two lobes of Klawatti Glacier show that climatic changes cannot be extrapolated from single-glacier maps because of meso-scale meteorological complications.


1983 ◽  
Vol 4 ◽  
pp. 295-295 ◽  
Author(s):  
Robert Bindschadler

The behavior of Griesgletscher, Switzerland, is studied by application of a numerical model of temperate glacier flow. The analysis addresses the possible danger posed to a hydroelectric dam which is 600 m from the calving terminus of the glacier. Model parameters are adjusted to fit data collected over eleven years. A calving law relating the calving flux to the water depth at the front provides a good fit of the data. Assuming a continuation of the present climate, the terminus is predicted to retreat 200 m over the next forty years, followed by an advance of 150 m lasting several centuries. Numerous experimental climate alterations show that the dam will not be threatened by short-term climatic changes. A long-term mass-balance increase of 0.12 m of ice per year (or a drop of 0.2°C in mean annual air temperature) would be sufficient to fill the reservoir with ice. With an additional increase of 0.07 m of ice per year the terminus would reach the dam. Data from the 1923 and 1850 moraines are used to suggest lower-bound estimates of temperature changes (-0.4 and -0.6°C respectively) during these periods of glacial maxima.


2008 ◽  
Vol 16 (3) ◽  
pp. 112-115 ◽  
Author(s):  
Stephan Bongard ◽  
Volker Hodapp ◽  
Sonja Rohrmann

Abstract. Our unit investigates the relationship of emotional processes (experience, expression, and coping), their physiological correlates and possible health outcomes. We study domain specific anger expression behavior and associated cardio-vascular loads and found e.g. that particularly an open anger expression at work is associated with greater blood pressure. Furthermore, we demonstrated that women may be predisposed for the development of certain mental disorders because of their higher disgust sensitivity. We also pointed out that the suppression of negative emotions leads to increased physiological stress responses which results in a higher risk for cardiovascular diseases. We could show that relaxation as well as music activity like singing in a choir causes increases in the local immune parameter immunoglobuline A. Finally, we are investigating connections between migrants’ strategy of acculturation and health and found e.g. elevated cardiovascular stress responses in migrants when they where highly adapted to the German culture.


2012 ◽  
Vol 43 (3) ◽  
pp. 115-126 ◽  
Author(s):  
Christina Matschke ◽  
Kai Sassenberg

Entering a new group provides the potential of forming a new social identity. Starting from self-regulation models, we propose that goals (e.g., internal motivation to enter the group), strategies (e.g., approach and avoidance strategies), and events (e.g., the group’s response) affect the development of the social self. In two studies we manipulated the group’s response (acceptance vs. rejection) and assessed internal motivation as well as approach and avoidance strategies. It was expected, and we found, that when newcomers are accepted, their use of approach strategies (but not avoidance strategies) facilitates social identification. In line with self-completion theory, for highly internally motivated individuals approach strategies facilitated social identification even upon rejection. The results underline the active role of newcomers in their social identity development.


Sign in / Sign up

Export Citation Format

Share Document