scholarly journals Numerical Study of Static Instability of Pipe Conveying Incompressible Fluid under Different Boundary Conditions 

2020 ◽  
Vol 13 (4) ◽  
pp. 736-747
Author(s):  
Dahmane Mouloud ◽  
Zahaf Samir ◽  
Sid Ahmed Slimane ◽  
Benkhettab Mohamed ◽  
Boutchicha Djilali
2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110094
Author(s):  
Ibrahim Elnasri ◽  
Han Zhao

In this study, we numerically investigate the impact perforation of sandwich panels made of 0.8 mm 2024-T3 aluminum alloy skin sheets and graded polymeric hollow sphere cores with four different gradient profiles. A suitable numerical model was conducted using the LS-DYNA code, calibrated with an inverse perforation test, instrumented with a Hopkinson bar, and validated using experimental data from the literature. Moreover, the effects of quasi-static loading, landing rates, and boundary conditions on the perforation resistance of the studied graded core sandwich panels were discussed. The simulation results showed that the piercing force–displacement response of the graded core sandwich panels is affected by the core density gradient profiles. Besides, the energy absorption capability can be effectively enhanced by modifying the arrangement of the core layers with unclumping boundary conditions in the graded core sandwich panel, which is rather too hard to achieve with clumping boundary conditions.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1079
Author(s):  
Lena Mahl ◽  
Patrick Heneka ◽  
Martin Henning ◽  
Roman B. Weichert

The efficiency of a fishway is determined by the ability of immigrating fish to follow its attraction flow (i.e., its jet) to locate and enter the fishway entrance. The hydraulic characteristics of fishway entrance jets can be simplified using findings from widely investigated surface jets produced by shaped nozzles. However, the effect of the different boundary conditions of fishway entrance jets (characterized by vertical entrance slots) compared to nozzle jets must be considered. We investigate the downstream propagation of attraction jets from the vertical slot of a fishway entrance into a quiescent tailrace, considering the following boundary conditions not considered for nozzle jets: (1) slot geometry, (2) turbulence characteristics of the approach flow to the slot, and (3) presence of a lateral wall downstream of the slot. We quantify the effect of these boundary conditions using three-dimensional hydrodynamic-numeric flow simulations with DES and RANS turbulence models and a volume-of-fluid method (VoF) to simulate the free water surface. In addition, we compare jet propagation with existing analytical methods for describing jet propagations from nozzles. We show that a turbulent and inhomogeneous approach flow towards a vertical slot reduces the propagation length of the slot jet in the tailrace due to increased lateral spreading compared to that of a jet produced by a shaped nozzle. An additional lateral wall in the tailrace reduces lateral spreading and significantly increases the propagation length. For highly turbulent flows at fishway entrances, the RANS model tends to overestimate the jet propagation compared to the transient DES model.


Author(s):  
Jacopo Quaglierini ◽  
Alessandro Lucantonio ◽  
Antonio DeSimone

Abstract Nature and technology often adopt structures that can be described as tubular helical assemblies. However, the role and mechanisms of these structures remain elusive. In this paper, we study the mechanical response under compression and extension of a tubular assembly composed of 8 helical Kirchhoff rods, arranged in pairs with opposite chirality and connected by pin joints, both analytically and numerically. We first focus on compression and find that, whereas a single helical rod would buckle, the rods of the assembly deform coherently as stable helical shapes wound around a common axis. Moreover, we investigate the response of the assembly under different boundary conditions, highlighting the emergence of a central region where rods remain circular helices. Secondly, we study the effects of different hypotheses on the elastic properties of rods, i.e., stress-free rods when straight versus when circular helices, Kirchhoff’s rod model versus Sadowsky’s ribbon model. Summing up, our findings highlight the key role of mutual interactions in generating a stable ensemble response that preserves the helical shape of the individual rods, as well as some interesting features, and they shed some light on the reasons why helical shapes in tubular assemblies are so common and persistent in nature and technology. Graphic Abstract We study the mechanical response under compression/extension of an assembly composed of 8 helical rods, pin-jointed and arranged in pairs with opposite chirality. In compression we find that, whereas a single rod buckles (a), the rods of the assembly deform as stable helical shapes (b). We investigate the effect of different boundary conditions and elastic properties on the mechanical response, and find that the deformed geometries exhibit a common central region where rods remain circular helices. Our findings highlight the key role of mutual interactions in the ensemble response and shed some light on the reasons why tubular helical assemblies are so common and persistent.


Soft Matter ◽  
2014 ◽  
Vol 10 (41) ◽  
pp. 8224-8228 ◽  
Author(s):  
Min-Jun Gim ◽  
Gohyun Han ◽  
Suk-Won Choi ◽  
Dong Ki Yoon

We have investigated dramatic changes in the thermal phase transition of a liquid-crystalline (LC) blue phase (BP) consisting of bent-core nematogen and chiral dopants under various boundary conditions during cooling from the isotropic phase.


Fractals ◽  
2015 ◽  
Vol 23 (04) ◽  
pp. 1550042 ◽  
Author(s):  
CÉCILE MONTHUS

For Gaussian Spin-Glasses in low dimensions, we introduce a simple Strong Disorder renormalization at zero temperature in order to construct ground states for Periodic and Anti-Periodic boundary conditions. The numerical study in dimensions [Formula: see text] (up to sizes [Formula: see text]) and [Formula: see text] (up to sizes [Formula: see text]) yields that Domain Walls are fractal of dimensions [Formula: see text] and [Formula: see text], respectively.


Sign in / Sign up

Export Citation Format

Share Document