scholarly journals STATUS OF SOIL MICROBIAL POPULATION, ENZYMATIC ACTIVITY AND BIOMASS OF SELECTED NATURAL, SECONDARY AND REHABILITATED FORESTS

2013 ◽  
Vol 9 (4) ◽  
pp. 301-309 ◽  
Author(s):  
Daljit Singh
Author(s):  
Wahyu Purbalisa ◽  
Ina Zulaehah ◽  
Dolty Melyga W. Paputri ◽  
Sri Wahyuni

Carbon and microbes in the soil fluctuated from time to time due to various things. This study aims to determine the dynamics of carbon and microbes in the soil in the treatment of biochar-compost. In addition to the use of biochar-compost, this research also uses nano biochar and enrichment with microbial consortia. The study was conducted at the screen house using a complete randomized design with three replications with following treatments: control / without organic fertilizer (P0), compost (P1), biochar-compost 1: 4 (P2), nano-biochar-compost 1: 4 (P3 ), biochar-compost + microbial consortia (P4), compost + microbial consortia (P5) and biochar-compost + microbial consortia (P6) with a dose of 2.5 tons/ha respectively. Biochar comes from corncobs. Compost biochar plus application was made before planting.  Parameters observed were soil carbon (C-organic), soil acidity (pH) at 7 DAA, 37 DAA and after harvest, and the total soil microbial population at 2 DAA and after harvest. Soil carbon was measured using Walkey and Black method measured by spectrophotometer, soil pH using a soil: water ratio = 1: 5 and measured by a pH meter, the total microbial population using Total Plate Counting (TPC) method. The results showed carbon and soil microbial populations decreased over time, except for microbial communities in a single compost treatment.


1990 ◽  
Vol 329 (1255) ◽  
pp. 369-373 ◽  

We tried to develop deterministic models for kinetics of 2,4-D breakdown in the soil based on the following considerations: (i) at low concentrations degradation results from maintenance consumption by a large fraction of the soil microbial population; (ii) at high concentration in addition to the maintenance consumption there is a growth-associated carbon incorporation by a small specific microbial population. Values for the biokinetic parameters are consistent with those commonly found in the literature. Comparison between observed and simulated curves suggests that a non-negligible part of the pesticidal carbon exists as microbial by-products.


Sign in / Sign up

Export Citation Format

Share Document