scholarly journals PARTICULARITIES OF DETERMINING PRIMARY ENERGY NEEDS FOR BUILDING MATERIALS/PIRMINĖS ENERGIJOS POREIKIŲ STATYBINĖMS MEDŽIAGOMS NUSTATYMO YPATUMAI

1997 ◽  
Vol 3 (11) ◽  
pp. 35-43
Author(s):  
Kęstutis Čiuprinskas ◽  
Vytautas Martinaitis

Civil buildings in Lithuania consume one half of final energy or about 70% of heat generated in thermoelectric and heat power stations. However, energy is necessary not only for exploitation but also for the creation of buildings: manufacture of building materials, transportation and construction. For global energy saving in the construction industry, at the state level, it is important to determine an optimum ratio between energy requirement for building creation and exploitation. Taking into account the durability of buildings for the evaluation of strategic relation ships between energetics and construction industry it is reasonable to use a physical building life cycle energy requirement model, because the reliability of an economical prognosis is usually lower than that in physical processes. In this work generalised ratios are suggested for energy requirement by the main building materials, which can be used in the calculation of a physical building life cycle model. In collecting this information three sources were used, namely: from Lithuania, former USSR and Western countries. In the beginning we hoped that the collected information would show higher energy needs for the production of building materials in Lithuania and other former USSR countries than those in developed countries, where manufacturing technology is more modern, and energy saving measures have been implemented earlier. After collecting more data, it was evident from foreign—literature that in Western countries the energy needs are bigger because they are based on other energy needs estimation levels. In the estimation data of energy needs for the Lithuanian building materials industry the levels of technological processes are not clearly described. In this case an application of such data for a physical model of life cycle cost estimations cannot be used directly. For a more detailed analysis 10 building materials were chosen: silicate brick, ceramic brick, rockwool, polyctirol, cement, timber, steel, glass, concrete, ferro-concrete. Energy requirements are classified according to 4 levels of full technological processes, i.e.: for the main process, for raw materials, for machines and for machines that produce these machines. Taking into account the indetermination of the information of data sources, the values can be recommended only for a tentative evaluation. More precise values can be obtained by a detailed analysis of the Lithuanian industry. For building construction industry prognosis one monitoring for building and insulation material manufacturing processes is necessary taking into account different technological levels and processes.

2011 ◽  
Vol 71-78 ◽  
pp. 3297-3302
Author(s):  
Hong Jun Jia ◽  
Yun Chen

The building energy consumption is one of the biggest components of energy consumption in China. Based on the building life cycle energy consumption theory, this paper proposed a modified model, which extra considered the influence of building planning, design and building materials’ recycle to energy consumption. This paper analyzed every building stage’s energy consumption and provided saving measures. According to the present situation of China, this paper explored new ideas on building energy saving.


2020 ◽  
Vol 3 (2) ◽  
pp. 32
Author(s):  
Wenxin Luo

<p>For the development and progress direction of contemporary construction industry, greening has always been one of the most important topics, which is basically consistent with China’s guidelines on environmental protection and resource conservation, with emphasis on whether it can effectively improve the ecological environment quality in urban areas, control various hazards caused by pollution, and build a healthy urban environment for people. Nowadays, the building materials market has also developed in an all-round way, and the types of materials for exterior wall insulation are also increasing. Relatively, the practical application difficulty of various technologies in the construction industry also shows an increasing trend. In order to better highlight the important role of insulation materials for green buildings, this paper will explore the application of exterior wall insulation materials with strong energy saving in green buildings.</p>


2020 ◽  
Vol 12 (14) ◽  
pp. 5666 ◽  
Author(s):  
Girts Bumanis ◽  
Laura Vitola ◽  
Ina Pundiene ◽  
Maris Sinka ◽  
Diana Bajare

To decrease the environmental impact of the construction industry, energy-efficient insulation materials with low embodied production energy are needed. Lime-hemp concrete is traditionally recognized as such a material; however, the drawbacks of this type of material are associated with low strength gain, high initial moisture content, and limited application. Therefore, this review article discusses alternatives to lime-hemp concrete that would achieve similar thermal properties with an equivalent or lower environmental impact. Binders such as gypsum, geopolymers, and starch are proposed as alternatives, due to their performance and low environmental impact, and available research is summarized and discussed in this paper. The summarized results show that low-density thermal insulation bio-composites with a density of 200–400 kg/m3 and thermal conductivity (λ) of 0.06–0.09 W/(m × K) can be obtained with gypsum and geopolymer binders. However, by using a starch binder it is possible to produce ecological building materials with a density of approximately 100 kg/m3 and thermal conductivity (λ) as low as 0.04 W/(m × K). In addition, a preliminary life cycle assessment was carried out to evaluate the environmental impact of reviewed bio-composites. The results indicate that such bio-composites have a low environmental impact, similar to lime-hemp concrete.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1905 ◽  
Author(s):  
Ming Hu

Knowledge and research tying the environmental impact and embodied energy together is a largely unexplored area in the building industry. The aim of this study is to investigate the practicality of using the ratio between embodied energy and embodied carbon to measure the building’s impact. This study is based on life-cycle assessment and proposes a new measure: life-cycle embodied performance (LCEP), in order to evaluate building performance. In this project, eight buildings located in the same climate zone with similar construction types are studied to test the proposed method. For each case, the embodied energy intensities and embodied carbon coefficients are calculated, and four environmental impact categories are quantified. The following observations can be drawn from the findings: (a) the ozone depletion potential could be used as an indicator to predict the value of LCEP; (b) the use of embodied energy and embodied carbon independently from each other could lead to incomplete assessments; and (c) the exterior wall system is a common significant factor influencing embodied energy and embodied carbon. The results lead to several conclusions: firstly, the proposed LCEP ratio, between embodied energy and embodied carbon, can serve as a genuine indicator of embodied performance. Secondly, environmental impact categories are not dependent on embodied energy, nor embodied carbon. Rather, they are proportional to LCEP. Lastly, among the different building materials studied, metal and concrete express the highest contribution towards embodied energy and embodied carbon.


2012 ◽  
Vol 518-523 ◽  
pp. 4425-4430
Author(s):  
Li Ping He ◽  
Yu Chen ◽  
Xue Ru Wang

The enormous consumption of resources and energy of construction industry results in severe environmental pollution. From both the views of energy consumption and environmental footprint, this article analyzed theoretically the energy consumption and environmental benefits on life cycle of wood-frame building, in order to determine the general impact on environment by appropriate building materials, so that some ideas for development of wood-frame architecture can be concluded.


2020 ◽  
Vol 12 (4) ◽  
pp. 1566 ◽  
Author(s):  
Yu Dong ◽  
Tongyu Qin ◽  
Siyuan Zhou ◽  
Lu Huang ◽  
Rui Bo ◽  
...  

Many stadiums will be built in China in the next few decades due to increasing public interest in physical exercise and the incentive policies issued by the government under its National Fitness Program. This paper investigates the energy saving and carbon reduction performance of timber stadiums in China in comparison with stadiums constructed using conventional building materials, based on both life cycle energy assessment (LCEA) and life cycle carbon assessment (LCCA). The authors select five representative cities in five climate zones in China as the simulation environment, simulate energy use in the operation phase of stadiums constructed from reinforced concrete (RC) and timber, and compare the RC and timber stadiums in terms of their life cycle energy consumption and carbon emissions. The LCEA results reveal that the energy saving potential afforded by timber stadiums is 11.05%, 12.14%, 8.15%, 4.61% and 4.62% lower than those of RC buildings in “severely cold,” “cold,” “hot summer, cold winter,” “hot summer, warm winter,” and “temperate” regions, respectively. The LCCA results demonstrate that the carbon emissions of timber stadiums are 15.85%, 15.86%, 18.88%, 19.22% and 22.47% lower than those of RC buildings for the regions above, respectively. This demonstrates that in China, timber stadiums have better energy conservation and carbon reduction potential than RC stadiums, based on life cycle assessment. Thus, policy makers are advised to encourage the promotion of timber stadiums in China to achieve the goal of sustainable energy development for public buildings.


2013 ◽  
Vol 479-480 ◽  
pp. 1071-1075 ◽  
Author(s):  
Yu Sheng Chang ◽  
Kuei Peng Lee

In the building industry, decreasing the CO2 emission not only is an important environmental issue but also an international responsibility in the future. This research analyzed building life cycle CO2 emission and used a building life cycle CO2 emission index (LCCO2). LCCO2 allows us to compare the impacts of different building designs to the environment and finds out the most efficient CO2 reduction strategy. A low floor house life cycle simulation showed that most CO2 emission in the life cycle comes from the daily use stage. Therefore, energy preservation in the daily life is the most important strategy to reduce CO2 emission in a building. Compared with the RC house, the light weight steel house uses more eco-friendly building materials and heat preservation materials. Therefore, the LCCO2 of the light weight steel house is reduced 31.34%. The research also showed that proper increase in the life span of the building also decreases CO2 emission. The light weight steel house is more eco-friendly than the RC house in the buildings life cycle.


2021 ◽  
Author(s):  
Hayley Cormick

This research aims to contribute to quantifying whole building life cycle assessment using various software tools to determine how they can aid the construction industry in reducing carbon emissions, and in particular embodied emissions, through analysis and reporting. The conducted research seeks to examine and compare three whole building life cycle assessment tools; Athena Impact Estimator, Tally and One-Click LCA to relate the input variability to the outputs of the three programs. The three whole building life-cycle assessments were conducted using a case study building with an identical bill of materials and compared to determine the applicability and strengths of one program over another. The research confirmed that the three programs output significantly different results given the variability in scope, allowable program inputs and generated “black-box” back-end calculations, where the outputted whole building life cycle carbon equivalents of One-Click LCA is less than half than of Tally meaning the programs outputs cannot be simply compared side-by-side.


Sign in / Sign up

Export Citation Format

Share Document